Machine Component Analysis with MATLAB

Machine Component Analysis with MATLAB

Author: Dan B. Marghitu

Publisher: Butterworth-Heinemann

Published: 2019-02-19

Total Pages: 232

ISBN-13: 012804229X

DOWNLOAD EBOOK

Machine Design Analysis with MATLAB is a highly practical guide to the fundamental principles of machine design which covers the static and dynamic behavior of engineering structures and components. MATLAB has transformed the way calculations are made for engineering problems by computationally generating analytical calculations, as well as providing numerical calculations. Using step-by-step, real world example problems, this book demonstrates how you can use symbolic and numerical MATLAB as a tool to solve problems in machine design. This book provides a thorough, rigorous presentation of machine design, augmented with proven learning techniques which can be used by students and practicing engineers alike.


Mechanisms and Robots Analysis with MATLAB®

Mechanisms and Robots Analysis with MATLAB®

Author: Dan B. Marghitu

Publisher: Springer Science & Business Media

Published: 2009-04-25

Total Pages: 480

ISBN-13: 1848003919

DOWNLOAD EBOOK

Modern technical advancements in areas such as robotics, multi-body systems, spacecraft, control, and design of complex mechanical devices and mechanisms in industry require the knowledge to solve advanced concepts in dynamics. “Mechanisms and Robots Analysis with MATLAB” provides a thorough, rigorous presentation of kinematics and dynamics. The book uses MATLAB as a tool to solve problems from the field of mechanisms and robots. The book discusses the tools for formulating the mathematical equations, and also the methods of solving them using a modern computing tool like MATLAB. An emphasis is placed on basic concepts, derivations, and interpretations of the general principles. The book is of great benefit to senior undergraduate and graduate students interested in the classical principles of mechanisms and robotics systems. Each chapter introduction is followed by a careful step-by-step presentation, and sample problems are provided at the end of every chapter.


Independent Component Analysis

Independent Component Analysis

Author: James V. Stone

Publisher: MIT Press

Published: 2004

Total Pages: 224

ISBN-13: 9780262693158

DOWNLOAD EBOOK

A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.


Statics with MATLAB®

Statics with MATLAB®

Author: Dan B. Marghitu

Publisher: Springer Science & Business Media

Published: 2013-06-13

Total Pages: 293

ISBN-13: 1447151100

DOWNLOAD EBOOK

Engineering mechanics involves the development of mathematical models of the physical world. Statics addresses the forces acting on and in mechanical objects and systems. Statics with MATLAB® develops an understanding of the mechanical behavior of complex engineering structures and components using MATLAB® to execute numerical calculations and to facilitate analytical calculations. MATLAB® is presented and introduced as a highly convenient tool to solve problems for theory and applications in statics. Included are example problems to demonstrate the MATLAB® syntax and to also introduce specific functions dealing with statics. These explanations are reinforced through figures generated with MATLAB® and the extra material available online which includes the special functions described. This detailed introduction and application of MATLAB® to the field of statics makes Statics with MATLAB® a useful tool for instruction as well as self study, highlighting the use of symbolic MATLAB® for both theory and applications to find analytical and numerical solutions


Introduction to Statistical Machine Learning

Introduction to Statistical Machine Learning

Author: Masashi Sugiyama

Publisher: Morgan Kaufmann

Published: 2015-10-31

Total Pages: 535

ISBN-13: 0128023503

DOWNLOAD EBOOK

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


Exploratory Data Analysis with MATLAB

Exploratory Data Analysis with MATLAB

Author: Wendy L. Martinez

Publisher: CRC Press

Published: 2017-08-07

Total Pages: 589

ISBN-13: 1315349841

DOWNLOAD EBOOK

Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data


Engineering Applications

Engineering Applications

Author: Mihai Dupac

Publisher: John Wiley & Sons

Published: 2021-03-24

Total Pages: 372

ISBN-13: 1119093643

DOWNLOAD EBOOK

ENGINEERING APPLICATIONS A comprehensive text on the fundamental principles of mechanical engineering Engineering Applications presents the fundamental principles and applications of the statics and mechanics of materials in complex mechanical systems design. Using MATLAB to help solve problems with numerical and analytical calculations, authors and noted experts on the topic Mihai Dupac and Dan B. Marghitu offer an understanding of the static behaviour of engineering structures and components while considering the mechanics of materials knowledge as the most important part of their design. The authors explore the concepts, derivations, and interpretations of general principles and discuss the creation of mathematical models and the formulation of mathematical equations. This practical text also highlights the solutions of problems solved analytically and numerically using MATLAB. The figures generated with MATLAB reinforce visual learning for students and professionals as they study the programs. This important text: Shows how mechanical principles are applied to engineering design Covers basic material with both mathematical and physical insight Provides an understanding of classical mechanical principles Offers problem solutions using MATLAB Reinforces learning using visual and computational techniques Written for students and professional mechanical engineers, Engineering Applications helpshone reasoning skills in order to interpret data and generate mathematical equations, offering different methods of solving them for evaluating and designing engineering systems.


Practical Machine Learning for Data Analysis Using Python

Practical Machine Learning for Data Analysis Using Python

Author: Abdulhamit Subasi

Publisher: Academic Press

Published: 2020-06-05

Total Pages: 536

ISBN-13: 0128213809

DOWNLOAD EBOOK

Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features