This reference compiles the most current technical and biological data available to survey the state-of-science in the care and management of patients with bronchopulmonary dysplasia, COPD, and other forms of lung disease-tracking the initiation and progression of processes that cause airway obstruction, the biologic and physiological abnormalities that characterize COPD, and the potential reversibility of the inflammatory response in COPD for improved patient diagnosis and treatment.
Most organs in the adult human body are able to maintain themselves and undergo repair after injury; these processes are largely dependent on stem cells. In this Monograph, the Guest Editors bring together leading authors in the field to provide information about the different classes of stem cells present both in the developing and adult lung: where they are found, how they function in homeostasis and pathologic conditions, the mechanisms that regulate their behaviour, and how they may be harnessed for therapeutic purposes. The book focuses on stem cells in the mouse and human lung but also includes the ferret as an increasingly important new model organism. Chapters also discuss how lung tissue, including endogenous stem cells, can be generated in vitro from pluripotent stem cell lines. This state-of-the-art collection comprehensively covers one of the most exciting areas of respiratory science
Knowledge about the mechanisms of lung development has been growing rapidly, especially with regard to cellular and molecular aspects of growth and differentiation. This authoritative international volume reviews key aspects of lung development in health and disease by providing a comprehensive review of the complex series of cellular and molecular interactions required for lung development. It covers such topics as pulmonary hypoplasia, effects of malnutrition, and pulmaonary angiogenesis. An indispensable reference for all those involved in studying or treating lung disease in neonates and children, the book offers a unique view of the development of this essential organ.
Lung disease affects more than 600 million people worldwide. While some of these lung diseases have an obvious developmental component, there is growing appreciation that processes and pathways critical for normal lung development are also important for postnatal tissue homeostasis and are dysregulated in lung disease. This book provides an authoritative review of fetal and neonatal lung development and is designed to provide a diverse group of scientists, spanning the basic to clinical research spectrum, with the latest developments on the cellular and molecular mechanisms of normal lung development and injury-repair processes, and how they are dysregulated in disease. The book covers genetics, omics, and systems biology as well as new imaging techniques that are transforming studies of lung development. The reader will learn where the field of lung development has been, where it is presently, and where it is going in order to improve outcomes for patients with common and rare lung diseases.
This open access book focuses on the molecular mechanism of congenital heart disease and pulmonary hypertension, offering new insights into the development of pulmonary circulation and the ductus arteriosus. It describes in detail the molecular mechanisms involved in the development and morphogenesis of the heart, lungs and ductus arteriosus, covering a range of topics such as gene functions, growth factors, transcription factors and cellular interactions, as well as stem cell engineering technologies. The book also presents recent advances in our understanding of the molecular mechanism of lung development, pulmonary hypertension and molecular regulation of the ductus arteriosus. As such, it is an ideal resource for physicians, scientists and investigators interested in the latest findings on the origins of congenital heart disease and potential future therapies involving pulmonary circulation/hypertension and the ductus arteriosus.
This book presents state-of-the-art pre-clinical models and clinical applications of stem-cell-based therapies applied to different lung diseases, with a special focus on the translation of bench data into clinical studies. Starting with the assumption that abnormal lung tissue repair and regeneration has emerged as the driving force underlying pathogenesis and progression in many lung diseases, it sheds new light on the potential of stem/stromal cells as drivers of repair and sources of reparative factors in the lung. The first part of the book offers an overview of stem cell types and mechanisms involved in lung development, homeostasis, repair and regeneration, and reveals the crucial role of the extracellular matrix within the lung microenvironment. In the second part, leading experts present the latest pre-clinical evidence and clinical applications of stem-cell-based therapies in a wide variety of lung diseases, ranging from COPD and lung fibrosis to other rare lung diseases. The last section discusses stem cell delivery systems and devices, such as aerosolised spray application. This book appeals to pneumologists, stem cell and matrix biologists, as well as bioengeneers with a special interest in regenerative medicine applied to pulmonary diseases.
Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease provides a one-stop resource capturing developments in lung epithelial biology related to basic physiology, pathophysiology, and links to human disease. The book provides access to knowledge of molecular and cellular aspects of lung homeostasis and repair, including the molecular basis of lung epithelial intercellular communication and lung epithelial channels and transporters. Also included is coverage of lung epithelial biology as it relates to fluid balance, basic ion/fluid molecular processes, and human disease. Useful to physician and clinical scientists, the contents of this book compile the important and most current findings about the role of epithelial cells in lung disease. Medical and graduate students, postdoctoral and clinical fellows, as well as clinicians interested in the mechanistic basis for lung disease will benefit from the books examination of principles of lung epithelium functions in physiological condition. - Provides a single source of information on lung epithelial junctions and transporters - Discusses of the role of the epithelium in lung homeostasis and disease - Includes capsule summaries of main conclusions as well as highlights of future directions in the field - Covers the mechanistic basis for lung disease for a range of audiences
The use of stem cells to help with lung regeneration and repair is a novel therapy which could help phase out the need for conventional surgical or pharmacological approaches currently employed to treat diseases of the lung or other organs. The present book explores all avenues of this new form of medical care, moving swiftly, but in depth, from the basic science of lung development, to the analyses of different stem cell types available for regeneration and on to the application of this knowledge base in initial clinical trials.In this volume a stellar group of researchers converge, from different angles, to help towards clarifying the basic mechanisms of lung repair. These range from basic concepts of regeneration and lung development, the analyses of a variety of cell types that may be involved in lung repair, to ways of creating complex lung structures, including artificial and bioartificial lungs. The book offers an insight into repair mechanisms of the diseased lung, the role of specific lung niches and provides information on initial clinical trials as well as the use of stem cells as vehicles for gene therapy. Ingenious technological aspects of assessing stem cell engraftment of stem cell bioprocessing are also included in this volume./a
Fully rewritten and updated for the cutting-edge sixth edition, Spencer's Pathology of the Lung follows in its predecessors' footsteps as the gold-standard textbook of pulmonary diseases. All recognized diseases of the lungs are discussed and illustrated with extensive, high-quality color images. Each chapter includes practical, clear and concise diagnostic features, including immunohistochemistry, molecular tests and differential diagnoses, while rare entities are discussed and illustrated in detail. This thoroughly reworked edition includes new classification schemes and the latest understanding of the pathophysiology and molecular aspects of a wide range of diseases. Non-neoplastic diseases are presented according to epidemiology, genetics, clinical manifestations, radiographic findings, pathology, cytology, laboratory findings, pathogenesis, differential diagnosis, prognosis and natural history. Neoplasms are discussed according to cell or origin with sections devoted to genetics, molecular findings and clinicopathologic correlations. Downloadable versions of all images are available on a CD-ROM packaged with the print book. Written and edited by leading experts in the field, this is an essential resource for practising and trainee pathologists.
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.