Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for
Recent developments in microelectronics technologies have created a great demand for interlayer dielectric materials with a very low dielectric constant. They will play a crucial role in the future generation of IC devices (VLSI/UISI and high speed IC packaging). Considerable efforts have been made to develop new low as well as high dielectric constant materials for applications in electronics industries. Besides achieving either low or high dielectric constants, other materials' properties such as good processability, high mechanical strength, high thermal and environmental stability, low thermal expansion, low current leakage, low moisture absorption, corrosion resistant, etc., are of equal importance. Many chemical and physical strategies have been employed to get desired dielectric materials with high performance. This is a rapidly growing field of science--both in novel materials and their applications to future packing technologies. The experimental data on inorganic and organic materials having low or high dielectric constant remail scattered in the literature. It is timely, therfore, to consolidate the current knowledge on low and high dielectric constant materials into a sigle reference source. Handbook of Low and High Dielectric Constant Materials and Their Applications is aimed at bringing together under a sigle cover (in two volumes) all low and high dielectric constant materials currently studied in academic and industrial research covering all spects of inorgani an organic materials from their synthetic chemistry, processing techniques, physics, structure-property relationship to applications in IC devices. This book will summarize the current status of the field covering important scientific developments made over the past decade with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source for all those interested in low and high dielectric constant material.
Issues relating to the high-K gate dielectric are among the greatest challenges for the evolving International Technology Roadmap for Semiconductors (ITRS). More than just an historical overview, this book will assess previous and present approaches related to scaling the gate dielectric and their impact, along with the creative directions and forthcoming challenges that will define the future of gate dielectric scaling technology. Topics include: an extensive review of Moore's Law, the classical regime for SiO2 gate dielectrics; the transition to silicon oxynitride gate dielectrics; the transition to high-K gate dielectrics (including the drive towards equivalent oxide thickness in the single-digit nanometer regime); and future directions and issues for ultimate technology generation scaling. The vision, wisdom, and experience of the team of authors will make this book a timely, relevant, and interesting, resource focusing on fundamentals of the 45 nm Technology Generation and beyond.
This book covers the combined subjects of organic electronic and optoelectronic materials/devices. It is designed for classroom instruction at the senior college level. Highlighting emerging organic and polymeric optoelectronic materials and devices, it presents the fundamentals, principle mechanisms, representative examples, and key data.
Semiconductor technologies are moving at such a fast pace that new materials are needed in all types of application. Manipulating the materials and their properties at atomic dimensions has become a must. This book presents the case of interlayer dielectrics materials whilst considering these challenges. Interlayer Dielectrics for Semiconductor Technologies cover the science, properties and applications of dielectrics, their preparation, patterning, reliability and characterisation, followed by the discussion of different materials including those with high dielctric constants and those useful for waveguide applications in optical communications on the chip and the package.* Brings together for the FIRST time the science and technology of interlayer deilectrics materials, in one volume* written by renowned experts in the field* Provides an up-to-date starting point in this young research field.
This accessible text is now fully revised and updated, providing an overview of fabrication technologies and materials needed to realize modern microdevices. It demonstrates how common microfabrication principles can be applied in different applications, to create devices ranging from nanometer probe tips to meter scale solar cells, and a host of microelectronic, mechanical, optical and fluidic devices in between. Latest developments in wafer engineering, patterning, thin films, surface preparation and bonding are covered. This second edition includes: expanded sections on MEMS and microfluidics related fabrication issues new chapters on polymer and glass microprocessing, as well as serial processing techniques 200 completely new and 200 modified figures more coverage of imprinting techniques, process integration and economics of microfabrication 300 homework exercises including conceptual thinking assignments, order of magnitude estimates, standard calculations, and device design and process analysis problems solutions to homework problems on the complementary website, as well as PDF slides of the figures and tables within the book With clear sections separating basic principles from more advanced material, this is a valuable textbook for senior undergraduate and beginning graduate students wanting to understand the fundamentals of microfabrication. The book also serves as a handy desk reference for practicing electrical engineers, materials scientists, chemists and physicists alike. www.wiley.com/go/Franssila_Micro2e
Low-dielectric constant materials are needed to improve the performance and speed of future integrated circuits. In fact, the diversity of contributors to this book is testimony to the global significance of the topic to the future of semiconductor manufacturing. Presentations include those by semiconductor equipment manufacturers and chemical source suppliers, academia from six countries, four government laboratories and five major device manufacturers. Approaches to designing and implementing reduction in dielectric constant for intermetal dielectric materials are featured and range from the evolution of silicon dioxide to fluorinated silicate glass, to the use of inorganic/organic polymers and spin-on-material, to fluorinated diamond-like carbon and nanoporous silica. The book also addresses the practical aspects of the use of low-dielectric constant materials such as chemical mechanical polishing of these materials and optimization of wiring delays in devices utilizing low-k material.
The developments in the area of ordered nanoporous solids have moved beyond the traditional catalytic and separation uses and given rise to a wide variety of new applications in different branches of chemistry, physics, material science, etc. The activity in this area is due to the outstanding properties of nanoporous materials that have attracted the attention of researchers from different communities. However, recent achievements in a specific field often remain out of the focus of collaborating communities. This work summarizes the latest developments and prospects in the area of ordered porous solids, including synthetic layered materials (clays), microporous zeolite-type materials, ordered mesoporous solids, metal-organic-framework compounds (MOFs), carbon, etc. All aspects, from synthesis via comprehensive characterization to the advanced applications of ordered porous materials, are presented. The chapters are written by leading experts in their respective fields with an emphasis on recent progress and the state of the art. - Summarizes the latest developments in the field of ordered nanoporous solids - Presents state-of-the-art coverage of applications related to porous solids - Incorporates 28 contributions from experts across the disciplines
Since overall circuit performance has depended primarily on transistor properties, previous efforts to enhance circuit and system speed were focused on transistors as well. During the last decade, however, the parasitic resistance, capacitance, and inductance associated with interconnections began to influence circuit performance and will be the primary factors in the evolution of nanoscale ULSI technology. Because metallic conductivity and resistance to electromigration of bulk copper (Cu) are better than aluminum, use of copper and low-k materials is now prevalent in the international microelectronics industry. As the feature size of the Cu-lines forming interconnects is scaled, resistivity of the lines increases. At the same time electromigration and stress-induced voids due to increased current density become significant reliability issues. Although copper/low-k technology has become fairly mature, there is no single book available on the promise and challenges of these next-generation technologies. In this book, a leader in the field describes advanced laser systems with lower radiation wavelengths, photolithography materials, and mathematical modeling approaches to address the challenges of Cu-interconnect technology.