This authoritative overview on an emerging topic in the molecular life sciences covers all aspects of the aging of (long-lived) proteins. It describes the molecular mechanisms of aging on the protein level, in particular the most common side chain modifications and includes analytical methods to study protein half-life and the accumulation of modifications. Finally, the impact of protein aging on several age-related disases in humans is dissected, and their role in limiting human lifespan is discussed.
This authoritative overview on an emerging topic in the molecular life sciences covers all aspects of the aging of (long-lived) proteins. It describes the molecular mechanisms of aging on the protein level, in particular the most common side chain modifications and includes analytical methods to study protein half-life and the accumulation of modifications. Finally, the impact of protein aging on several age-related disases in humans is dissected, and their role in limiting human lifespan is discussed.
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
Recognition that aging is not the accumulation of disease, but rather comprises fundamental biological processes that are amenable to experimental study, is the basis for the recent growth of experimental biogerontology. As increasingly sophisticated studies provide greater understanding of what occurs in the aging brain and how these changes occur
Humanity is aging. In the last century, life expectancy has increased by as much as 25 years, the greatest increase in 5'000 years of history. As a consequence the elderly constitute today the fastest growing segment of the world's population. This new situation creates many social problems and challenges to health care which both the developed as well as the developing countries will have to cope with. The present publication shows that scientific progress has reached a level where nutritional interventions may play a decisive part in the prevention of degenerative conditions of age, improvement of quality of life and impact on health care burden and resources. Topics deal with such different aspects as the influence of prenatal and early infant nutrition on the future aged individual and effects of energetic restriction on longevity. Further contributions include studies on mitochondrial alterations, digestive problems, specific metabolic deviations mediated by insulin, bone degradation, structural changes, neuromuscular dysfunctions, mental state of the elderly as well as the response of the immune system to nutrient intake. Finally the book offers a review of requirements appropriate to meet the age-related public health challenges of the 21st century.
Proper folding of proteins is crucial for cell function. Chaperones and enzymes that post-translationally modify newly synthesized proteins help ensure that proteins fold correctly, and the unfolded protein response functions as a homeostatic mechanism that removes misfolded proteins when cells are stressed. This book covers the entire spectrum of proteostasis in healthy cells and the diseases that result when control of protein production, protein folding, and protein degradation goes awry.
Does a longer life mean a healthier life? The number of adults over 65 in the United States is growing, but many may not be aware that they are at greater risk from foodborne diseases and their nutritional needs change as they age. The IOM's Food Forum held a workshop October 29-30, 2009, to discuss food safety and nutrition concerns for older adults.
Heat shock proteins are emerging as important molecules in the development of cancer and as key targets in cancer therapy. These proteins enhance the growth of cancer cells and protect tumors from treatments such as drugs or surgery. However, new drugs have recently been developed particularly those targeting heat shock protein 90. As heat shock protein 90 functions to stabilize many of the oncogenes and growth promoting proteins in cancer cells, such drugs have broad specificity in many types of cancer cell and offer the possibility of evading the development of resistance through point mutation or use of compensatory pathways. Heat shock proteins have a further property that makes them tempting targets in cancer immunotherapy. These proteins have the ability to induce an inflammatory response when released in tumors and to carry tumor antigens to antigen presenting cells. They have thus become important components of anticancer vaccines. Overall, heat shock proteins are important new targets in molecular cancer therapy and can be approached in a number of contrasting approaches to therapy.
This authoritative overview on an emerging topic in the molecular life sciences covers all aspects of the aging of (long-lived) proteins. It describes the molecular mechanisms of aging on the protein level, in particular the most common side chain modifications and includes analytical methods to study protein half-life and the accumulation of modifications. Finally, the impact of protein aging on several age-related disases in humans is dissected, and their role in limiting human lifespan is discussed.