Logical Foundations of Mathematics and Computational Complexity

Logical Foundations of Mathematics and Computational Complexity

Author: Pavel Pudlák

Publisher: Springer Science & Business Media

Published: 2013-04-22

Total Pages: 699

ISBN-13: 3319001191

DOWNLOAD EBOOK

The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.


Logical Foundations of Proof Complexity

Logical Foundations of Proof Complexity

Author: Stephen Cook

Publisher: Cambridge University Press

Published: 2014-03-06

Total Pages: 0

ISBN-13: 9781107694118

DOWNLOAD EBOOK

This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. Associated with each of many complexity classes are both a two-sorted predicate calculus theory, with induction restricted to concepts in the class, and a propositional proof system. The result is a uniform treatment of many systems in the literature, including Buss's theories for the polynomial hierarchy and many disparate systems for complexity classes such as AC0, AC0(m), TC0, NC1, L, NL, NC, and P.


Mathematics and Computation

Mathematics and Computation

Author: Avi Wigderson

Publisher: Princeton University Press

Published: 2019-10-29

Total Pages: 434

ISBN-13: 0691189137

DOWNLOAD EBOOK

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography


Harvey Friedman's Research on the Foundations of Mathematics

Harvey Friedman's Research on the Foundations of Mathematics

Author: L.A. Harrington

Publisher: Elsevier

Published: 1985-11-01

Total Pages: 407

ISBN-13: 9780080960401

DOWNLOAD EBOOK

This volume discusses various aspects of Harvey Friedman's research in the foundations of mathematics over the past fifteen years. It should appeal to a wide audience of mathematicians, computer scientists, and mathematically oriented philosophers.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Descriptive Complexity

Descriptive Complexity

Author: Neil Immerman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 275

ISBN-13: 1461205395

DOWNLOAD EBOOK

By virtue of the close relationship between logic and relational databases, it turns out that complexity has important applications to databases such as analyzing the parallel time needed to compute a query, and the analysis of nondeterministic classes. This book is a relatively self-contained introduction to the subject, which includes the necessary background material, as well as numerous examples and exercises.


Completeness and Reduction in Algebraic Complexity Theory

Completeness and Reduction in Algebraic Complexity Theory

Author: Peter Bürgisser

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 174

ISBN-13: 3662041790

DOWNLOAD EBOOK

This is a thorough and comprehensive treatment of the theory of NP-completeness in the framework of algebraic complexity theory. Coverage includes Valiant's algebraic theory of NP-completeness; interrelations with the classical theory as well as the Blum-Shub-Smale model of computation, questions of structural complexity; fast evaluation of representations of general linear groups; and complexity of immanants.


A Concise Introduction to Mathematical Logic

A Concise Introduction to Mathematical Logic

Author: Wolfgang Rautenberg

Publisher: Springer

Published: 2010-07-01

Total Pages: 337

ISBN-13: 1441912215

DOWNLOAD EBOOK

Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.