Logarithmic Integral Equations in Electromagnetics

Logarithmic Integral Equations in Electromagnetics

Author: IU. IUrii Viktorovich Shestopalov

Publisher: VSP

Published: 2000

Total Pages: 140

ISBN-13: 9789067643221

DOWNLOAD EBOOK

This book presents an extensive overview of logarithmic integral operators with kernels depending on one or several complex parameters. Solvability of corresponding boundary value problems and determination of characteristic numbers are analyzed by considering these operators as operator-value functions of appropriate complex (spectral) parameters. Therefore, the method serves as a useful addition to classical approaches. Special attention is given to the analysis of finite-meromorphic operator-valued functions, and explicit formulas for some inverse operators and characteristic numbers are developed, as well as the perturbation technique for the approximate solution of logarithmic integral equations. All essential properties of the generalized single- and double-layer potentials with logarithmic kernels and Green's potentials are considered. Fundamentals of the theory of infinite-matrix summation operators and operator-valued functions are presented, including applications to the solution of logarithmic integral equations. Many boundary value problems for the two-dimensional Helmholtz equation are discussed and explicit formulas for Green's function of canonical domains with separated logarithmic singularities are presented.


Operator Theory for Electromagnetics

Operator Theory for Electromagnetics

Author: George W. Hanson

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 640

ISBN-13: 1475736797

DOWNLOAD EBOOK

This text discusses electromagnetics from the view of operator theory, in a manner more commonly seen in textbooks of quantum mechanics. It includes a self-contained introduction to operator theory, presenting definitions and theorems, plus proofs of the theorems when these are simple or enlightening.


Optical Waveguide Theory

Optical Waveguide Theory

Author: Yury Shestopalov

Publisher: Springer Nature

Published: 2022-03-26

Total Pages: 269

ISBN-13: 9811905843

DOWNLOAD EBOOK

This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures —shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.


Inverse Problems and Large-Scale Computations

Inverse Problems and Large-Scale Computations

Author: Larisa Beilina

Publisher: Springer Science & Business Media

Published: 2013-10-01

Total Pages: 223

ISBN-13: 3319006606

DOWNLOAD EBOOK

This volume is a result of two international workshops, namely the Second Annual Workshop on Inverse Problems and the Workshop on Large-Scale Modeling, held jointly in Sunne, Sweden from May 1-6 2012. The subject of the inverse problems workshop was to present new analytical developments and new numerical methods for solutions of inverse problems. The objective of the large-scale modeling workshop was to identify large-scale problems arising in various fields of science and technology and covering all possible applications, with a particular focus on urgent problems in theoretical and applied electromagnetics. The workshops brought together scholars, professionals, mathematicians, and programmers and specialists working in large-scale modeling problems. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.


Inverse Acoustic and Electromagnetic Scattering Theory

Inverse Acoustic and Electromagnetic Scattering Theory

Author: David Colton

Publisher: Springer Nature

Published: 2019-11-06

Total Pages: 526

ISBN-13: 3030303519

DOWNLOAD EBOOK

The inverse scattering problem is central to many areas of science and technology such as radar, sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this fourth edition, a number of significant additions have been made including a new chapter on transmission eigenvalues and a new section on the impedance boundary condition where particular attention has been made to the generalized impedance boundary condition and to nonlocal impedance boundary conditions. Brief discussions on the generalized linear sampling method, the method of recursive linearization, anisotropic media and the use of target signatures in inverse scattering theory have also been added.


Linear Integral Equations

Linear Integral Equations

Author: Rainer Kress

Publisher: Springer Science & Business Media

Published: 2013-12-04

Total Pages: 427

ISBN-13: 1461495938

DOWNLOAD EBOOK

This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn–Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)


Integral Equation Methods in Scattering Theory

Integral Equation Methods in Scattering Theory

Author: David Colton

Publisher: SIAM

Published: 2013-11-15

Total Pages: 286

ISBN-13: 1611973155

DOWNLOAD EBOOK

This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.


Special Functions & Their Applications

Special Functions & Their Applications

Author: N. N. Lebedev

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 340

ISBN-13: 0486139891

DOWNLOAD EBOOK

Famous Russian work discusses the application of cylinder functions and spherical harmonics; gamma function; probability integral and related functions; Airy functions; hyper-geometric functions; more. Translated by Richard Silverman.