An Introduction to Noncommutative Noetherian Rings

An Introduction to Noncommutative Noetherian Rings

Author: K. R. Goodearl

Publisher: Cambridge University Press

Published: 2004-07-12

Total Pages: 372

ISBN-13: 9780521545372

DOWNLOAD EBOOK

This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.


Noncommutative Localization in Algebra and Topology

Noncommutative Localization in Algebra and Topology

Author: Andrew Ranicki

Publisher: Cambridge University Press

Published: 2006-02-09

Total Pages: 332

ISBN-13: 9780521681605

DOWNLOAD EBOOK

Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.


Noncommutative Noetherian Rings

Noncommutative Noetherian Rings

Author: John C. McConnell

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 658

ISBN-13: 0821821695

DOWNLOAD EBOOK

This is a reprinted edition of a work that was considered the definitive account in the subject area upon its initial publication by J. Wiley & Sons in 1987. It presents, within a wider context, a comprehensive account of noncommutative Noetherian rings. The author covers the major developments from the 1950s, stemming from Goldie's theorem and onward, including applications to group rings, enveloping algebras of Lie algebras, PI rings, differential operators, and localization theory. The book is not restricted to Noetherian rings, but discusses wider classes of rings where the methods apply more generally. In the current edition, some errors were corrected, a number of arguments have been expanded, and the references were brought up to date. This reprinted edition will continue to be a valuable and stimulating work for readers interested in ring theory and its applications to other areas of mathematics.


Noncommutative Geometry

Noncommutative Geometry

Author: Alain Connes

Publisher: Springer

Published: 2003-12-15

Total Pages: 364

ISBN-13: 3540397027

DOWNLOAD EBOOK

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.


A First Course in Noncommutative Rings

A First Course in Noncommutative Rings

Author: T.Y. Lam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 410

ISBN-13: 1468404067

DOWNLOAD EBOOK

One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.


Introduction To Commutative Algebra

Introduction To Commutative Algebra

Author: Michael F. Atiyah

Publisher: CRC Press

Published: 2018-03-09

Total Pages: 140

ISBN-13: 0429973268

DOWNLOAD EBOOK

First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.