The Stress Analysis of Pressure Vessels and Pressure Vessel Components, Volume 3 deals with the basic principles and concepts underlying stress analysis of pressure vessels and related components used in the nuclear energy industry. Among the components subjected to stress analysis are pressure vessel branches, pressure vessel ends, local attachments, and flanges. Smooth and mitered pipe bends, externally pressurized vessels, and creep effects in structures are also analyzed. This book is comprised of 11 chapters that explore the main problems of structural analysis related to the design of me.
A pressure vessel is a container that holds a liquid, vapor, or gas at a different pressure other than atmospheric pressure at the same elevation. More specifically in this instance, a pressure vessel is used to 'distill'/'crack' crude material taken from the ground (petroleum, etc.) and output a finer quality product that will eventually become gas, plastics, etc. This book is an accumulation of design procedures, methods, techniques, formulations, and data for use in the design of pressure vessels, their respective parts and equipment. The book has broad applications to chemical, civil and petroleum engineers, who construct, install or operate process facilities, and would also be an invaluable tool for those who inspect the manufacturing of pressure vessels or review designs. - ASME standards and guidelines (such as the method for determining the Minimum Design Metal Temperature)are impenetrable and expensive: avoid both problems with this expert guide - Visual aids walk the designer through the multifaceted stages of analysis and design - Includes the latest procedures to use as tools in solving design issues
Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. - Covers almost all problems that a working pressure vessel designer can expect to face, with 50+ step-by-step design procedures including a wealth of equations, explanations and data - Internationally recognized, widely referenced and trusted, with 20+ years of use in over 30 countries making it an accepted industry standard guide - Now revised with up-to-date ASME, ASCE and API regulatory code information, and dual unit coverage for increased ease of international use
The Stress Analysis of Pressure Vessels and Pressure Vessel Components, Volume 3 deals with the basic principles and concepts underlying stress analysis of pressure vessels and related components used in the nuclear energy industry. Among the components subjected to stress analysis are pressure vessel branches, pressure vessel ends, local attachments, and flanges. Smooth and mitered pipe bends, externally pressurized vessels, and creep effects in structures are also analyzed. This book is comprised of 11 chapters that explore the main problems of structural analysis related to the design of metal pressure vessels and components. After introducing the reader to the basic principles of stress analysis, it turns to nozzles in pressure vessels. The shakedown analysis of radial nozzles in spheres is described for pressure, thrust, moment, shear, and combined loading. The problem of pressure vessel ends is treated next, along with local loads applied to pressure vessel shells at nozzles and local attachments such as support points. An analysis of pressure vessels using a computer is also presented. The final chapter describes the analysis of ligament stresses in pressure vessels and includes a discussion on arrays of holes with reinforcement. This volume will be of value to nuclear and structural engineers as well as designers and research workers in the nuclear industry.
Simplifies pressure vessels design based on the current ASME codes Explains design topics of non-coded parts to calculate the stresses for any type of arrangement Covers failure analysis related to elements of pressure vessels Provides backend of design software and codes useful to designers Describes the equations by simple fundamental design methods and calculations required for preparing manufacturing drawings
A practical handbook, this second edition of a successful guide will prove itself valuable on a daily basis with its reliable and up to date facts and figures. The intent is to increase the reader's design efficiency with numerous design shortcuts, derivations of established design procedures, and new design techniques. Time-saving formulas, calculations, examples, and solutions to design problems appear throught.
This edition covers every major aspect of pressure vessel design and provides up-to-date requirements given in ASME, ASCE, UBC, and AISC codes. The well-respected manual offers page after page of fully illustrated, step-by-step procedures. Many of the 45 design procedures have been updated and expanded to: - Incorporate the broadest range of design cases - Provide the maximum flexibility - Supply more detail - Handle a greater variety of problems
An illustrative guide to the analysis needed to achieve a safe design in ASME Pressure Vessels, Boilers, and Nuclear Components Stress in ASME Pressure Vessels, Boilers, and Nuclear Components offers a revised and updatededition of the text, Design of Plate and Shell Structures. This important resource offers engineers and students a text that covers the complexities involved in stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards. The author covers the basic theories and includes a wealth of illustrative examples for the design of components that address the internal and external loads as well as other loads such as wind and dead loads. The text keeps the various derivations relatively simple and the resulting equations are revised to a level so that they can be applied directly to real-world design problems. The many examples clearly show the level of analysis needed to achieve a safe design based on a given required degree of accuracy. Written to be both authoritative and accessible, this important updated book: Offers an increased focus on mechanical engineering and contains more specific and practical code-related guidelines Includes problems and solutions for course and professional training use Examines the basic aspects of relevant theories and gives examples for the design of components Contains various derivations that are kept relatively simple so that they can be applied directly to design problems Written for professional mechanical engineers and students, this text offers a resource to the theories and applications that are needed to achieve an understanding of stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards.
With very few books adequately addressing ASME Boiler & Pressure Vessel Code, and other international code issues, Pressure Vessels: Design and Practice provides a comprehensive, in-depth guide on everything engineers need to know. With emphasis on the requirements of the ASME this consummate work examines the design of pressure vessel com