This volume contains the updated and expanded lecture notes of the 37th Saas-Fee Advanced Course organised by the Swiss Society for Astrophysics and Astronomy. It offers the most comprehensive and up to date review of one of the hottest research topics in astrophysics - how our Milky Way galaxy formed. Joss Bland-Hawthorn & Ken Freeman lectured on Near Field Cosmology - The Origin of the Galaxy and the Local Group. Francesca Matteucci’s chapter is on Chemical evolution of the Milky Way and its Satellites. As designed by the SSAA, books in this series – and this one too – are targeted at graduate and PhD students and young researchers in astronomy, astrophysics and cosmology. Lecturers and researchers entering the field will also benefit from the book.
Dwarf galaxies offer a valuable insight into the physical processes that govern galaxy formation and evolution at high redshift. These elusive stellar systems are helping astronomers to find answers to some of the most burning questions in extragalactic astronomy. Present-day dwarf galaxies, the easily studied survivors of the primordial galaxy population, are important targets for research in the quest to provide local benchmarks for cosmological studies, in particular theories of structure formation. The proceedings of IAUC198 offer an exciting multidisciplinary collection of research results. The interpretation of the faint blue galaxy excess; the mismatch of the observed dwarf galaxy numbers with popular cosmological model predictions; and the puzzling diversity of star-formation histories among Local Group dwarf elliptical galaxies, are amongst the topical questions covered. Dwarf galaxy specialists and cosmologists map out strategies and outline a framework for progress on important issues related to near-field cosmology with dwarf elliptical galaxies.
Dark matter is a fundamental component of the standard cosmological model, but in spite of four decades of increasingly sensitive searches, no-one has yet detected a single dark-matter particle in the laboratory. An alternative cosmological paradigm exists: MOND (Modified Newtonian Dynamics). Observations explained in the standard model by postulating dark matter are described in MOND by proposing a modification of Newton's laws of motion. Both MOND and the standard model have had successes and failures – but only MOND has repeatedly predicted observational facts in advance of their discovery. In this volume, David Merritt outlines why such predictions are considered by many philosophers of science to be the 'gold standard' when it comes to judging a theory's validity. In a world where the standard model receives most attention, the author applies criteria from the philosophy of science to assess, in a systematic way, the viability of this alternative cosmological paradigm.
The large-scale structure of the Universe is dominated by vast voids with galaxies clustered in knots, sheets, and filaments, forming a great 'cosmic web'. In this personal account of the major astronomical developments leading to this discovery, we learn from Laird A. Thompson, a key protagonist, how the first 3D maps of galaxies were created. Using non-mathematical language, he introduces the standard model of cosmology before explaining how and why ideas about cosmic voids evolved, referencing the original maps, reproduced here. His account tells of the competing teams of observers, racing to publish their results, the theorists trying to build or update their models to explain them, and the subsequent large-scale survey efforts that continue to the present day. This is a well-documented account of the birth of a major pillar of modern cosmology, and a useful case study of the trials surrounding how this scientific discovery became accepted.
This timely book presents an overview of the galaxies within the Local Volume, including the Local Group and our closest neighbours, the Andromeda Galaxy and the Magellanic Clouds. Presented here are the latest results from radio, infrared and optical surveys as well as detailed multi-wavelength studies of individual galaxies. The book aims to provide a vibrant forum for presentations and discussions across a broad range of astrophysical topics.
This book contains an up-to-date review of the structure and evolution of disk galaxies from both the observational and theoretical point of view. It is the proceedings of the "Island Universes" conference held at the island of Terschelling in July 2005. It brings together a broad range of aspects of disk galaxies: structure and dynamics, the latest multi-wavelength surveys, low- and high redshift observations, theory and observations.
This book provides a remarkable and complete survey of important questions at the interface between theoretical particle physics and cosmology. After discussing the theoretical and experimental physics revolution that led to the rise of the Standard Model in the past century, the author reviews all the major open puzzles, among them the hierarchy problem, the small value of the cosmological constant, the matter-antimatter asymmetry, and the dark matter enigma, including the state-of-the-art regarding proposed solutions. Also addressed are the rapidly expanding fields of thermal dark matter, cosmological first-order phase transitions and gravitational-wave signatures. In addition, the book presents the original and interdisciplinary PhD research work of the author relating to Weakly-Interacting-Massive-Particles around the TeV scale, which are among the most studied dark matter candidates. Motivated by the absence of experimental evidence for such particles, this thesis explores the possibility that dark matter is much heavier than what is conventionally assumed.
Astronomers have successfully observed a great deal of the Universe's history, from recording the afterglow of the Big Bang to imaging thousands of galaxies, and even to visualising an actual black hole. There's a lot for astronomers to be smug about. But when it comes to understanding how the Universe began and grew up we are literally in the dark ages. In effect, we are missing the first one billion years from the timeline of the Universe. This brief but far-reaching period in the Universe's history, known to astrophysicists as the 'Epoch of Reionisation', represents the start of the cosmos as we experience it today. The time when the very first stars burst into life, when darkness gave way to light. After hundreds of millions of years of dark, uneventful expansion, one by the one these stars suddenly came into being. This was the point at which the chaos of the Big Bang first began to yield to the order of galaxies, black holes and stars, kick-starting the pathway to planets, to comets, to moons, and to life itself. Incorporating the very latest research into this branch of astrophysics, this book sheds light on this time of darkness, telling the story of these first stars, hundreds of times the size of the Sun and a million times brighter, lonely giants that lived fast and died young in powerful explosions that seeded the Universe with the heavy elements that we are made of. Emma Chapman tells us how these stars formed, why they were so unusual, and what they can teach us about the Universe today. She also offers a first-hand look at the immense telescopes about to come on line to peer into the past, searching for the echoes and footprints of these stars, to take this period in the Universe's history from the realm of theoretical physics towards the wonder of observational astronomy.
This review examines all the key physical processes involved in the formation and evolution of the Milky Way, based on an international meeting held in Granada (Spain).