This work summarizes the historical progression of the field of lithium (Li) isotope studies and provides a comprehensive yet succinct overview of the research applications toward which they have been directed. In synthesizing the historical and current research, the volume also suggests prospective future directions of study. Not even a full decade has passed since the publication of a broadly inclusive summary of Li isotope research around the globe (Tomascak, 2004). In this short time, the use of this isotope system in the investigation of geo- and cosmochemical questions has increased dramatically, due, in part, to the advent of new analytical technology at the end of the last millennium. Lithium, as a light element that forms low-charge, moderate-sized ions, manifests a number of chemical properties that make its stable isotope system useful in a wide array of geo- and cosmochemical research fields.
Lithium isotopes are a relatively novel tracer of present and past silicate weathering processes. Given that silicate weathering is the primary long-term method by which CO2 is removed from the atmosphere, Li isotope research is going through an exciting phase. We show the weathering processes that fractionate dissolved and sedimentary Li isotope ratios, focusing on weathering intensity and clay formation. We then discuss the carbonate and silicate archive potential of past seawater δ7Li. These archives have been used to examine Li isotope changes across both short and long timescales. The former can demonstrate the rates at which the climate is stabilised from perturbations via weathering, a fundamental piece of the puzzle of the long-term carbon cycle.
The development of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) makes it possible to precisely measure non-traditional stable isotopes. This volume reviews the current status of non-traditional isotope geochemistry from analytical, theoretical, and experimental approaches to analysis of natural samples. In particular, important applications to cosmochemistry, high-temperature geochemistry, low-temperature geochemistry, and geobiology are discussed. This volume provides the most comprehensive review on non-traditional isotope geochemistry for students and researchers who are interested in both the theory and applications of non-traditional stable isotope geochemistry.
The Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.
Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties.
Lithium batteries may hold the key to an environmentally sustainable, oil-independent future. From electric cars to a "smart" power grid that can actually store electricity, letting us harness the powers of the sun and the wind and use them when we need them, lithium—a metal half as dense as water, found primarily in some of the most uninhabitable places on earth—has the potential to set us on a path toward a low-carbon energy economy. In Bottled Lightning, the science reporter Seth Fletcher takes us on a fascinating journey, from the salt flats of Bolivia to the labs of MIT and Stanford, from the turmoil at GM to cutting-edge lithium-ion battery start-ups, introducing us to the key players and ideas in an industry with the power to reshape the world. Lithium is the thread that ties together many key stories of our time: the environmental movement; the American auto industry, staking its revival on the electrification of cars and trucks; the struggle between first-world countries in need of natural resources and the impoverished countries where those resources are found; and the overwhelming popularity of the portable, Internet-connected gadgets that are changing the way we communicate. With nearly limitless possibilities, the promise of lithium offers new hope to a foundering American economy desperately searching for a green-tech boom to revive it.
Applications of radioactive and stable isotopes have revolutionized our understanding of the Earth and near-earth surface processes. The utility of the isotopes are ever-increasing and our sole focus is to bring out the applications of these isotopes as tracers and chronometers to a wider audience so that they can be used as powerful tools to solve environmental problems. New developments in this field remain mostly in peer-reviewed journal articles and hence our goal is to synthesize these findings for easy reference for students, faculty, regulators in governmental and non-governmental agencies, and environmental companies. While this volume maintains its rigor in terms of its depth of knowledge and quantitative information, it contains the breadth needed for wide variety problems and applications in the environmental sciences. This volume presents all of the newer and older applications of isotopes pertaining to the environmental problems in one place that is readily accessible to readers. This book not only has the depth and rigor that is needed for academia, but it has the breadth and case studies to illustrate the utility of the isotopes in a wide variety of environments (atmosphere, oceans, lakes, rivers and streams, terrestrial environments, and sub-surface environments) and serves a large audience, from students and researchers, regulators in federal, state and local governments, and environmental companies.
The goal for Volume 55 of Reviews in Mineralogy and Geochemistry was to bring together a summary of the isotope geochemistry of non-traditional stable isotope systems as is known through 2003 for those elements that have been studied in some detail, and which have a variety of geochemical properties. In addition, recognizing that many of these elements are of interest to workers who are outside the traditional stable isotope fields, we felt it was important to include discussions on the broad isotopic variations that occur in the solar system, theoretical approaches to calculating isotopic fractionations, and the variety of analytical methods that are in use. We hope, therefore, that this volume proves to be useful to not only the isotope specialist, but to others who are interested in the contributions that these non-traditional stable isotopes may make toward understanding geochemical and biological cycles. The review chapters in this volume were the basis for a two-day short course on nontraditional stable isotopes held prior (May 15-16, 2004) to the spring AGU/CGU Meeting in Montreal, Canada.
Isotopes are used in many areas of science and technology, including medicine, archaeology, and nuclear physics. They are central to our understanding of the Earth's past and current processes. Here, Rob Ellam explains the importance and applications of stable and radioactive isotopes.
Volume 16 of Reviews in Mineralogy inroduces to high-temperature stable isotope geochemistry and should provide an entry into the pertinent literature, as well as some understanding of the basic concepts and potential applications. The first three chapters focus on the theory and experimental data base for equilibrium, disequilibrium, and kinetics of stable isotope exchange reactions among geologically important minerals and fluids. The fourth chapter discusses the primordial oxygen isotope variations in the solar system prior to formation of the Earth, along with a discussion of isotopic anomalies in meteorites. The fifth chapter discusses isotopic variations in the Earth's mantle and the sixth chapter reviews the variations in the isotopic compositions of natural waters on our planet. In Chapters 7, 8, 9 and 10, these isotopic constraints and concepts are applied to various facets of the origin and evolution of igneous rocks, bringing in much material on radiogenic isotopes as well, because these problems require a multi-dimensional attack for their solution. In Chapters 11 and 12, the problems of hydrothermal alteration by meteoric waters and ocean water are considered, together with discussions of the physics and chemistry of hydrothermal systems and the 18O/16O history of ocean water. Finally, in Chapters 13 and 14, these concepts are applied to problems of metamorphic petrology and ore deposits, particularly with respect to the origins of the fluids involved in those processes.