Unconventional Reservoir Geomechanics

Unconventional Reservoir Geomechanics

Author: Mark D. Zoback

Publisher: Cambridge University Press

Published: 2019-05-16

Total Pages: 495

ISBN-13: 1107087074

DOWNLOAD EBOOK

A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.


Geomechanical and Petrophysical Properties of Mudrocks

Geomechanical and Petrophysical Properties of Mudrocks

Author: E.H. Rutter

Publisher: Geological Society of London

Published: 2017-10-09

Total Pages: 369

ISBN-13: 1786203162

DOWNLOAD EBOOK

A surge of interest in the geomechanical and petrophysical properties of mudrocks (shales) has taken place in recent years following the development of a shale gas industry in the United States and elsewhere, and with the prospect of similar developments in the UK. Also, these rocks are of particular importance in excavation and construction geotechnics and other rock engineering applications, such as underground natural gas storage, carbon dioxide disposal and radioactive waste storage. They may greatly influence the stability of natural and engineered slopes. Mudrocks, which make up almost three-quarters of all the sedimentary rocks on Earth, therefore impact on many areas of applied geoscience. This volume focuses on the mechanical behaviour and various physical properties of mudrocks. The 15 chapters are grouped into three themes: (i) physical properties such as porosity, permeability, fluid flow through cracks, strength and geotechnical behaviour; (ii) mineralogy and microstructure, which control geomechanical behaviour; and (iii) fracture, both in laboratory studies and in the field.


Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs

Author: Jianchao Cai

Publisher: Elsevier

Published: 2019-01-24

Total Pages: 354

ISBN-13: 0128172894

DOWNLOAD EBOOK

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures. - Includes both practical and theoretical research for the characterization of unconventional reservoirs - Covers the basic approaches and mechanisms for enhanced recovery techniques in unconventional reservoirs - Presents the latest research in the fluid transport processes in unconventional reservoirs


Fundamentals of Gas Shale Reservoirs

Fundamentals of Gas Shale Reservoirs

Author: Reza Rezaee

Publisher: John Wiley & Sons

Published: 2015-07-01

Total Pages: 417

ISBN-13: 1119039266

DOWNLOAD EBOOK

Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs Includes statistics about gas shale resources and countries that have shale gas potential Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs Includes case studies of major producing gas shale formations


Petroleum Related Rock Mechanics

Petroleum Related Rock Mechanics

Author: Erling Fjær

Publisher: Elsevier

Published: 2008-01-04

Total Pages: 515

ISBN-13: 0080557090

DOWNLOAD EBOOK

Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. - Learn the basic principles behind rock mechanics from leading academic and industry experts - Quick reference and guide for engineers and geologists working in the field - Keep informed and up to date on all the latest methods and fundamental concepts


Unconventional Oil and Gas Resources

Unconventional Oil and Gas Resources

Author: Usman Ahmed

Publisher: CRC Press

Published: 2016-04-05

Total Pages: 862

ISBN-13: 1498759416

DOWNLOAD EBOOK

As the shale revolution continues in North America, unconventional resource markets are emerging on every continent. In the next eight to ten years, more than 100,000 wells and one- to two-million hydraulic fracturing stages could be executed, resulting in close to one trillion dollars in industry spending. This growth has prompted professionals ex


Geologic Analysis of Naturally Fractured Reservoirs

Geologic Analysis of Naturally Fractured Reservoirs

Author: Ronald Nelson

Publisher: Elsevier

Published: 2001-08-24

Total Pages: 353

ISBN-13: 0080507298

DOWNLOAD EBOOK

Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. - A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs - Provides real-life illustrations through case histories and field and laboratory data


Seismic Amplitude

Seismic Amplitude

Author: Rob Simm

Publisher: Cambridge University Press

Published: 2014-04-17

Total Pages: 283

ISBN-13: 1107011507

DOWNLOAD EBOOK

This book introduces practical seismic analysis techniques and evaluation of interpretation confidence, for graduate students and industry professionals - independent of commercial software products.


Geomechanical Studies of the Barnett Shale, Texas, USA

Geomechanical Studies of the Barnett Shale, Texas, USA

Author: John Peter Vermylen

Publisher: Stanford University

Published: 2011

Total Pages: 143

ISBN-13:

DOWNLOAD EBOOK

This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.