Natural Language Processing with Python

Natural Language Processing with Python

Author: Steven Bird

Publisher: "O'Reilly Media, Inc."

Published: 2009-06-12

Total Pages: 506

ISBN-13: 0596555717

DOWNLOAD EBOOK

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.


Linguistic Fundamentals for Natural Language Processing

Linguistic Fundamentals for Natural Language Processing

Author: Emily M. Bender

Publisher: Morgan & Claypool Publishers

Published: 2013-06-01

Total Pages: 186

ISBN-13: 1627050124

DOWNLOAD EBOOK

Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion information about the morphological and syntactic structure of human languages that can be useful in creating more linguistically sophisticated, more language-independent, and thus more successful NLP systems. Table of Contents: Acknowledgments / Introduction/motivation / Morphology: Introduction / Morphophonology / Morphosyntax / Syntax: Introduction / Parts of speech / Heads, arguments, and adjuncts / Argument types and grammatical functions / Mismatches between syntactic position and semantic roles / Resources / Bibliography / Author's Biography / General Index / Index of Languages


Introduction to Natural Language Processing

Introduction to Natural Language Processing

Author: Jacob Eisenstein

Publisher: MIT Press

Published: 2019-10-01

Total Pages: 535

ISBN-13: 0262042843

DOWNLOAD EBOOK

A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.


Natural Language Processing

Natural Language Processing

Author: Yue Zhang

Publisher: Cambridge University Press

Published: 2021-01-07

Total Pages: 487

ISBN-13: 1108420214

DOWNLOAD EBOOK

This undergraduate textbook introduces essential machine learning concepts in NLP in a unified and gentle mathematical framework.


Natural Language Processing in Artificial Intelligence

Natural Language Processing in Artificial Intelligence

Author: Brojo Kishore Mishra

Publisher: CRC Press

Published: 2020-11-01

Total Pages: 297

ISBN-13: 1000711315

DOWNLOAD EBOOK

This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.


Handbook of Natural Language Processing and Machine Translation

Handbook of Natural Language Processing and Machine Translation

Author: Joseph Olive

Publisher: Springer Science & Business Media

Published: 2011-03-02

Total Pages: 956

ISBN-13: 1441977139

DOWNLOAD EBOOK

This comprehensive handbook, written by leading experts in the field, details the groundbreaking research conducted under the breakthrough GALE program--The Global Autonomous Language Exploitation within the Defense Advanced Research Projects Agency (DARPA), while placing it in the context of previous research in the fields of natural language and signal processing, artificial intelligence and machine translation. The most fundamental contrast between GALE and its predecessor programs was its holistic integration of previously separate or sequential processes. In earlier language research programs, each of the individual processes was performed separately and sequentially: speech recognition, language recognition, transcription, translation, and content summarization. The GALE program employed a distinctly new approach by executing these processes simultaneously. Speech and language recognition algorithms now aid translation and transcription processes and vice versa. This combination of previously distinct processes has produced significant research and performance breakthroughs and has fundamentally changed the natural language processing and machine translation fields. This comprehensive handbook provides an exhaustive exploration into these latest technologies in natural language, speech and signal processing, and machine translation, providing researchers, practitioners and students with an authoritative reference on the topic.


Natural Language Processing In Healthcare

Natural Language Processing In Healthcare

Author: Satya Ranjan Dash

Publisher: CRC Press

Published: 2022-09-13

Total Pages: 261

ISBN-13: 1000624684

DOWNLOAD EBOOK

Natural Language Processing In Healthcare: A Special Focus on Low Resource Languages covers the theoretical and practical aspects as well as ethical and social implications of NLP in healthcare. It showcases the latest research and developments contributing to the rising awareness and importance of maintaining linguistic diversity. The book goes on to present current advances and scenarios based on solutions in healthcare and low resource languages and identifies the major challenges and opportunities that will impact NLP in clinical practice and health studies.


Embeddings in Natural Language Processing

Embeddings in Natural Language Processing

Author: Mohammad Taher Pilehvar

Publisher: Morgan & Claypool Publishers

Published: 2020-11-13

Total Pages: 177

ISBN-13: 1636390226

DOWNLOAD EBOOK

Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.