Mechanics of Solids

Mechanics of Solids

Author: C. Truesdell

Publisher: Springer

Published: 1984-06-01

Total Pages: 0

ISBN-13: 9783540131618

DOWNLOAD EBOOK

Reissue of Encyclopedia of Physics / Handbuch der Physik, Volume VIa The mechanical response of solids was first reduced to an organized science of fairly general scope in the nineteenth century. The theory of small elastic deformations is in the main the creation of CAUCHY, who, correcting and simplifying the work of NAVIER and POISSON, through an astounding application of conjoined scholarship, originality, and labor greatly extended in breadth the shallowest aspects of the treatments of par ticular kinds of bodies by GALILEO, LEIBNIZ, JAMES BERNOULLI, PARENT, DANIEL BER NOULLI, EULER, and COULOMB. Linear elasticity became a branch of mathematics, culti vated wherever there were mathematicians. The magisterial treatise of LOVE in its second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary of the classical theory. It is one of the great "gaslight works" that in BOCHNER'S words! "either do not have any adequate successor[ s] . . . or, at least, refuse to be super seded . . . ; and so they have to be reprinted, in ever increasing numbers, for active research and reference", as long as State and Society shall permit men to learn mathe matics by, for, and of men's minds. Abundant experimentation on solids was done during the same century. Usually the materials arising in nature, with which experiment most justly concerns itself, do not stoop easily to the limitations classical elasticity posits.


Mechanics of Solids

Mechanics of Solids

Author: C. Truesdell

Publisher: Springer

Published: 1972-09-28

Total Pages: 0

ISBN-13: 9783540055358

DOWNLOAD EBOOK

Reissue of Encyclopedia of Physics / Handbuch der Physik, Volume VIa The mechanical response of solids was first reduced to an organized science of fairly general scope in the nineteenth century. The theory of small elastic deformations is in the main the creation of CAUCHY, who, correcting and simplifying the work of NAVIER and POISSON, through an astounding application of conjoined scholarship, originality, and labor greatly extended in breadth the shallowest aspects of the treatments of par ticular kinds of bodies by GALILEO, LEIBNIZ, JAMES BERNOULLI, PARENT, DANIEL BER NOULLI, EULER, and COULOMB. Linear elasticity became a branch of mathematics, culti vated wherever there were mathematicians. The magisterial treatise of LOVE in its second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary of the classical theory. It is one of the great "gaslight works" that in BOCHNER'S words! "either do not have any adequate successor[ s] . . . or, at least, refuse to be super seded . . . ; and so they have to be reprinted, in ever increasing numbers, for active research and reference", as long as State and Society shall permit men to learn mathe matics by, for, and of men's minds. Abundant experimentation on solids was done during the same century. Usually the materials arising in nature, with which experiment most justly concerns itself, do not stoop easily to the limitations classical elasticity posits.


Mechanics of Solids

Mechanics of Solids

Author: C. Truesdell

Publisher: Springer

Published: 1972

Total Pages: 0

ISBN-13: 9783642695674

DOWNLOAD EBOOK

Reissue of Encyclopedia of Physics / Handbuch der Physik, Volume VIa The mechanical response of solids was first reduced to an organized science of fairly general scope in the nineteenth century. The theory of small elastic deformations is in the main the creation of CAUCHY, who, correcting and simplifying the work of NAVIER and POISSON, through an astounding application of conjoined scholarship, originality, and labor greatly extended in breadth the shallowest aspects of the treatments of par ticular kinds of bodies by GALILEO, LEIBNIZ, JAMES BERNOULLI, PARENT, DANIEL BER NOULLI, EULER, and COULOMB. Linear elasticity became a branch of mathematics, culti vated wherever there were mathematicians. The magisterial treatise of LOVE in its second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary of the classical theory. It is one of the great "gaslight works" that in BOCHNER'S words! "either do not have any adequate successor[ s] . . . or, at least, refuse to be super seded . . . ; and so they have to be reprinted, in ever increasing numbers, for active research and reference", as long as State and Society shall permit men to learn mathe matics by, for, and of men's minds. Abundant experimentation on solids was done during the same century. Usually the materials arising in nature, with which experiment most justly concerns itself, do not stoop easily to the limitations classical elasticity posits.


Mechanics of Solids

Mechanics of Solids

Author: C. Truesdell

Publisher: Springer

Published: 1972-09-28

Total Pages: 745

ISBN-13: 9783540055358

DOWNLOAD EBOOK

Reissue of Encyclopedia of Physics / Handbuch der Physik, Volume VIa The mechanical response of solids was first reduced to an organized science of fairly general scope in the nineteenth century. The theory of small elastic deformations is in the main the creation of CAUCHY, who, correcting and simplifying the work of NAVIER and POISSON, through an astounding application of conjoined scholarship, originality, and labor greatly extended in breadth the shallowest aspects of the treatments of par ticular kinds of bodies by GALILEO, LEIBNIZ, JAMES BERNOULLI, PARENT, DANIEL BER NOULLI, EULER, and COULOMB. Linear elasticity became a branch of mathematics, culti vated wherever there were mathematicians. The magisterial treatise of LOVE in its second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary of the classical theory. It is one of the great "gaslight works" that in BOCHNER'S words! "either do not have any adequate successor[ s] . . . or, at least, refuse to be super seded . . . ; and so they have to be reprinted, in ever increasing numbers, for active research and reference", as long as State and Society shall permit men to learn mathe matics by, for, and of men's minds. Abundant experimentation on solids was done during the same century. Usually the materials arising in nature, with which experiment most justly concerns itself, do not stoop easily to the limitations classical elasticity posits.


Rods, Plates and Shells

Rods, Plates and Shells

Author: Albert Edward Green

Publisher:

Published: 1969

Total Pages: 81

ISBN-13:

DOWNLOAD EBOOK

A detailed development of nonlinear thermodynamical theories of rods and shells is discussed using the three dimensional theory of classical continuum mechanics as a starting point. A portion of the paper supplements and amplifies the previous work on the subject by Green, Laws and Naghdi. Special attention is given to non-isothermal linear theories of elastic shells and straight elastic rods which are derived from the three dimensional equations. (Author).


Rods, Plates and Shells

Rods, Plates and Shells

Author: Albert Edward Green

Publisher:

Published: 1967

Total Pages: 78

ISBN-13:

DOWNLOAD EBOOK

Non-linear thermodynamical theories of rods and shells are discussed using the three dimensional theory of classical continuum mechanics as a starting point. The three dimensional theory is reduced to a two dimensional theory for a shell, or plate, and a one dimensional theory for a rod by employing an exact expansion for the displacement but an approximation for the temperature. For elastic rods and shells a method of approximation is suggested which brings the respective theories into correspondence with those of Green and Laws and Green, Naghdi and Wainwright. (Author).


Mechanics for Materials and Technologies

Mechanics for Materials and Technologies

Author: Holm Altenbach

Publisher: Springer

Published: 2017-04-02

Total Pages: 460

ISBN-13: 3319560506

DOWNLOAD EBOOK

This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.