Linear Probability, Logit, and Probit Models

Linear Probability, Logit, and Probit Models

Author: John H. Aldrich

Publisher: SAGE

Published: 1984-11

Total Pages: 100

ISBN-13: 9780803921337

DOWNLOAD EBOOK

After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.


Interpreting Probability Models

Interpreting Probability Models

Author: Tim Futing Liao

Publisher: SAGE

Published: 1994-06-30

Total Pages: 100

ISBN-13: 9780803949997

DOWNLOAD EBOOK

What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.


Logit and Probit

Logit and Probit

Author: Vani K. Borooah

Publisher: SAGE

Published: 2002

Total Pages: 108

ISBN-13: 9780761922421

DOWNLOAD EBOOK

Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.


Logit Modeling

Logit Modeling

Author: Alfred DeMaris

Publisher: SAGE

Published: 1992-06-06

Total Pages: 100

ISBN-13: 9780803943773

DOWNLOAD EBOOK

Logit models : theoretical background. Logit models for multidimensional tables. Logistic regression. Advanced topics in logistic regression. Appendix : Computer routines.


Regression Models for Categorical and Limited Dependent Variables

Regression Models for Categorical and Limited Dependent Variables

Author: J. Scott Long

Publisher: SAGE

Published: 1997-01-09

Total Pages: 334

ISBN-13: 9780803973749

DOWNLOAD EBOOK

Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.


Modeling Ordered Choices

Modeling Ordered Choices

Author: William H. Greene

Publisher: Cambridge University Press

Published: 2010-04-08

Total Pages: 383

ISBN-13: 1139485954

DOWNLOAD EBOOK

It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.


Using R for Principles of Econometrics

Using R for Principles of Econometrics

Author: Constantin Colonescu

Publisher: Lulu.com

Published: 2017-12-28

Total Pages: 278

ISBN-13: 1387473611

DOWNLOAD EBOOK

This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.


Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation

Author: Kenneth Train

Publisher: Cambridge University Press

Published: 2009-07-06

Total Pages: 399

ISBN-13: 0521766559

DOWNLOAD EBOOK

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.


Log-Linear Models and Logistic Regression

Log-Linear Models and Logistic Regression

Author: Ronald Christensen

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 498

ISBN-13: 0387226249

DOWNLOAD EBOOK

The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression.


Best Practices in Logistic Regression

Best Practices in Logistic Regression

Author: Jason W. Osborne

Publisher: SAGE Publications

Published: 2014-02-26

Total Pages: 489

ISBN-13: 1483312097

DOWNLOAD EBOOK

Jason W. Osborne’s Best Practices in Logistic Regression provides students with an accessible, applied approach that communicates logistic regression in clear and concise terms. The book effectively leverages readers’ basic intuitive understanding of simple and multiple regression to guide them into a sophisticated mastery of logistic regression. Osborne’s applied approach offers students and instructors a clear perspective, elucidated through practical and engaging tools that encourage student comprehension.