Linear Multivariable Control

Linear Multivariable Control

Author: W. M. Wonham

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 357

ISBN-13: 3662226731

DOWNLOAD EBOOK

In writing this monograph my objective is to present arecent, 'geometrie' approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. The book is addressed to graduate students specializing in control, to engineering scientists engaged in control systems research and development, and to mathematicians with some previous acquaintance with control problems. The label 'geometrie' is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometrie) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometrie properties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, not so long ago. But secondlyand of greater interest, the geometrie setting rather quickly suggested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arith metic as soonas you want to compute. The essence of the 'geometrie' approach is just this: instead of looking directly for a feedback laW (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say J. Then, if all is weIl, you may calculate F from J quite easily.


Linear Multivariable Control

Linear Multivariable Control

Author: Walter Murray Wonham

Publisher:

Published: 1974

Total Pages: 347

ISBN-13: 9783662226759

DOWNLOAD EBOOK

In writing this monograph my objective is to present arecent, 'geometrie' approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. The book is addressed to graduate students specializing in control, to engineering scientists engaged in control systems research and development, and to mathematicians with some previous acquaintance with control problems. The label 'geometrie' is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometrie) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometrie properties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, not so long ago. But secondlyand of greater interest, the geometrie setting rather quickly suggested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arith metic as soonas you want to compute. The essence of the 'geometrie' approach is just this: instead of looking directly for a feedback laW (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say J. Then, if all is weIl, you may calculate F from J quite easily.


Linear Multivariable Control Systems

Linear Multivariable Control Systems

Author: Shankar P. Bhattacharyya

Publisher: Cambridge University Press

Published: 2022-01-13

Total Pages: 697

ISBN-13: 1108841686

DOWNLOAD EBOOK

A graduate text providing broad coverage of linear multivariable control systems, including several new results and recent approaches.


Geometric Control of Patterned Linear Systems

Geometric Control of Patterned Linear Systems

Author: Sarah C. Hamilton

Publisher: Springer Science & Business Media

Published: 2012-04-05

Total Pages: 166

ISBN-13: 3642288030

DOWNLOAD EBOOK

This monograph is aiming at researchers of systems control, especially those interested in multiagent systems, distributed and decentralized control, and structured systems. The book assumes no prior background in geometric control theory; however, a first year graduate course in linear control systems is desirable. Since not all control researchers today are exposed to geometric control theory, the book also adopts a tutorial style by way of examples that illustrate the geometric and abstract algebra concepts used in linear geometric control. In addition, the matrix calculations required for the studied control synthesis problems of linear multivariable control are illustrated via a set of running design examples. As such, some of the design examples are of higher dimension than one may typically see in a text; this is so that all the geometric features of the design problem are illuminated.