Linear Geometry with Computer Graphics

Linear Geometry with Computer Graphics

Author: John Loustau

Publisher: CRC Press

Published: 1992-12-16

Total Pages: 466

ISBN-13: 9780824788988

DOWNLOAD EBOOK

Stressing the interplay between theory and its practice, this text presents the construction of linear models that satisfy geometric postulate systems and develops geometric topics in computer graphics. It includes a computer graphics utility library of specialized subroutines on a 3.5 disk, designed for use with Turbo PASCAL 4.0 (or later version) - an effective means of computer-aided instruction for writing graphics problems.;Providing instructors with maximum flexibility that allows for the mathematics or computer graphics sections to be taught independently, this book: reviews linear algebra and notation, focusing on ideas of geometric significance that are often omitted in general purpose linear algebra courses; develops symmetric bilinear forms through classical results, including the inertia theorem, Witt's cancellation theorem and the unitary diagonalization of symmetric matrices; examines the Klein Erlanger programm, constructing models of geometries, and studying associated transformation groups; clarifies how to construct geometries from groups, encompassing topological notions; and introduces topics in computer graphics, including geometric modeling, surface rendering and transformation groups.


Geometric Algebra for Computer Science

Geometric Algebra for Computer Science

Author: Leo Dorst

Publisher: Elsevier

Published: 2010-07-26

Total Pages: 664

ISBN-13: 0080553109

DOWNLOAD EBOOK

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA


Computational Geometry and Computer Graphics in C++

Computational Geometry and Computer Graphics in C++

Author: Michael Jay Laszlo

Publisher:

Published: 1996

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

This book provides an accessible introduction to methods in computational geometry and computer graphics. It emphasizes the efficient object-oriented implemenation of geometric methods with useable C++ code for all methods discussed.


An Integrated Introduction to Computer Graphics and Geometric Modeling

An Integrated Introduction to Computer Graphics and Geometric Modeling

Author: Ronald Goldman

Publisher: CRC Press

Published: 2009-07-14

Total Pages: 592

ISBN-13: 1439803358

DOWNLOAD EBOOK

Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with f


Geometric Tools for Computer Graphics

Geometric Tools for Computer Graphics

Author: Philip Schneider

Publisher: Elsevier

Published: 2002-10-10

Total Pages: 1053

ISBN-13: 0080478026

DOWNLOAD EBOOK

Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more. If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices. Features - Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors. - Covers problems relevant for both 2D and 3D graphics programming. - Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you. - Provides the math and geometry background you need to understand the solutions and put them to work. - Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode. - Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.* Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors.* Covers problems relevant for both 2D and 3D graphics programming.* Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you.* Provides the math and geometry background you need to understand the solutions and put them to work.* Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode.* Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.


When Life is Linear

When Life is Linear

Author: Tim Chartier

Publisher: The Mathematical Association of America

Published: 2015-01-07

Total Pages: 151

ISBN-13: 0883856492

DOWNLOAD EBOOK

From simulating complex phenomenon on supercomputers to storing the coordinates needed in modern 3D printing, data is a huge and growing part of our world. A major tool to manipulate and study this data is linear algebra. When Life is Linear introduces concepts of matrix algebra with an emphasis on application, particularly in the fields of computer graphics and data mining. Readers will learn to make an image transparent, compress an image and rotate a 3D wireframe model. In data mining, readers will use linear algebra to read zip codes on envelopes and encrypt sensitive information. Chartier details methods behind web search, utilized by such companies as Google, and algorithms for sports ranking which have been applied to creating brackets for March Madness and predict outcomes in FIFA World Cup soccer. The book can serve as its own resource or to supplement a course on linear algebra.


Mathematics for Computer Graphics

Mathematics for Computer Graphics

Author: John Vince

Publisher: Springer Science & Business Media

Published: 2005-11-09

Total Pages: 268

ISBN-13: 9781846280344

DOWNLOAD EBOOK

This is a concise and informal introductory book on the mathematical concepts that underpin computer graphics. The author, John Vince, makes the concepts easy to understand, enabling non-experts to come to terms with computer animation work. The book complements the author's other works and is written in the same accessible and easy-to-read style. It is also a useful reference book for programmers working in the field of computer graphics, virtual reality, computer animation, as well as students on digital media courses, and even mathematics courses.


Computer Graphics and Geometric Modelling

Computer Graphics and Geometric Modelling

Author: Max K. Agoston

Publisher: Springer Science & Business Media

Published: 2005-01-04

Total Pages: 960

ISBN-13: 9781852338183

DOWNLOAD EBOOK

Possibly the most comprehensive overview of computer graphics as seen in the context of geometric modeling, this two-volume work covers implementation and theory in a thorough and systematic fashion. It covers the computer graphics part of the field of geometric modeling and includes all the standard computer graphics topics. The CD-ROM features two companion programs.


Geometric Algebra for Computer Graphics

Geometric Algebra for Computer Graphics

Author: John Vince

Publisher: Springer Science & Business Media

Published: 2008-04-21

Total Pages: 268

ISBN-13: 1846289963

DOWNLOAD EBOOK

Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems. The author tackles this complex subject with inimitable style, and provides an accessible and very readable introduction. The book is filled with lots of clear examples and is very well illustrated. Introductory chapters look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.


Applied Geometry for Computer Graphics and CAD

Applied Geometry for Computer Graphics and CAD

Author: Duncan Marsh

Publisher: Springer

Published: 2006-03-30

Total Pages: 361

ISBN-13: 1846281091

DOWNLOAD EBOOK

Focusing on the manipulation and representation of geometrical objects, this book explores the application of geometry to computer graphics and computer-aided design (CAD). Over 300 exercises are included, some new to this edition, and many of which encourage the reader to implement the techniques and algorithms discussed through the use of a computer package with graphing and computer algebra capabilities. A dedicated website also offers further resources and useful links.