Linear Algebra and Learning from Data

Linear Algebra and Learning from Data

Author: Gilbert Strang

Publisher: Wellesley-Cambridge Press

Published: 2019-01-31

Total Pages: 0

ISBN-13: 9780692196380

DOWNLOAD EBOOK

Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.


Machine Learning for Signal Processing

Machine Learning for Signal Processing

Author: Max A. Little

Publisher: Oxford University Press, USA

Published: 2019

Total Pages: 378

ISBN-13: 0198714939

DOWNLOAD EBOOK

Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.


Linear Algebra for Signal Processing

Linear Algebra for Signal Processing

Author: Adam Bojanczyk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1461242282

DOWNLOAD EBOOK

Signal processing applications have burgeoned in the past decade. During the same time, signal processing techniques have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This trend will continue as many new signal processing applications are opening up in consumer products and communications systems. In particular, signal processing has been making increasingly sophisticated use of linear algebra on both theoretical and algorithmic fronts. This volume gives particular emphasis to exposing broader contexts of the signal processing problems so that the impact of algorithms and hardware can be better understood; it brings together the writings of signal processing engineers, computer engineers, and applied linear algebraists in an exchange of problems, theories, and techniques. This volume will be of interest to both applied mathematicians and engineers.


Practical Linear Algebra for Machine Learning

Practical Linear Algebra for Machine Learning

Author: Amirsina Torfi

Publisher:

Published: 2019-12-26

Total Pages: 64

ISBN-13: 9781651122631

DOWNLOAD EBOOK

Machine Learning is everywhere these days and a lot of fellows desire to learn it and even master it! This burning desire creates a sense of impatience. We are looking for shortcuts and willing to ONLY jump to the main concept. If you do a simple search on the web, you see thousands of people asking "How can I learn Machine Learning?", "What is the fastest approach to learn Machine Learning?", and "What are the best resources to start Machine Learning?" \textit. Mastering a branch of science is NOT just a feel-good exercise. It has its own requirements.One of the most critical requirements for Machine Learning is Linear Algebra. Basically, the majority of Machine Learning is working with data and optimization. How can you want to learn those without Linear Algebra? How would you process and represent data without vectors and matrices? On the other hand, Linear Algebra is a branch of mathematics after all. A lot of people trying to avoid mathematics or have the temptation to "just learn as necessary." I agree with the second approach, though. \textit: You cannot escape Linear Algebra if you want to learn Machine Learning and Deep Learning. There is NO shortcut.The good news is there are numerous resources out there. In fact, the availability of numerous resources made me ponder whether writing this book was necessary? I have been blogging about Machine Learning for a while and after searching and searching I realized there is a deficiency of an organized book which \textbf teaches the most used Linear Algebra concepts in Machine Learning, \textbf provides practical notions using everyday used programming languages such as Python, and \textbf be concise and NOT unnecessarily lengthy.In this book, you get all of what you need to learn about Linear Algebra that you need to master Machine Learning and Deep Learning.


Numerical Matrix Analysis

Numerical Matrix Analysis

Author: Ilse C. F. Ipsen

Publisher: SIAM

Published: 2009-07-23

Total Pages: 135

ISBN-13: 0898716764

DOWNLOAD EBOOK

Matrix analysis presented in the context of numerical computation at a basic level.


Basics of Linear Algebra for Machine Learning

Basics of Linear Algebra for Machine Learning

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2018-01-24

Total Pages: 211

ISBN-13:

DOWNLOAD EBOOK

Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.


Linear Algebra, Signal Processing, and Wavelets - A Unified Approach

Linear Algebra, Signal Processing, and Wavelets - A Unified Approach

Author: Øyvind Ryan

Publisher: Springer

Published: 2019-03-05

Total Pages: 381

ISBN-13: 3030018121

DOWNLOAD EBOOK

This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.


Linear Algebra and Optimization for Machine Learning

Linear Algebra and Optimization for Machine Learning

Author: Charu C. Aggarwal

Publisher: Springer Nature

Published: 2020-05-13

Total Pages: 507

ISBN-13: 3030403440

DOWNLOAD EBOOK

This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.


Data Science for Iot Engineers: A Systems Analytics Approach

Data Science for Iot Engineers: A Systems Analytics Approach

Author: P. G. Madhavan

Publisher: Mercury Learning and Information

Published: 2021-12-30

Total Pages: 180

ISBN-13: 9781683926429

DOWNLOAD EBOOK

This book is designed to introduce the concepts of data science to professionals in engineering, physics, mathematics, and allied fields. It is a workbook with MATLAB code that creates a common framework and points out various interconnections related to industry. This will allow the reader to connect previous subject knowledge to data science, machine learning, or analytics and apply it to IoT applications. Part One brings together subjects in machine learning, systems theory, linear algebra, digital signal processing, and probability theory. Part Two (Systems Analytics) develops a "universal" nonlinear, time-varying dynamical machine learning solution that can faithfully model all the essential complexities of real-life business problems and shows how to apply it. FEATURES: Introduces the concepts of data science to professionals in engineering, physics, mathematics, and allied fields Develops a "universal," nonlinear, dynamical machine learning solution to model and apply the complexities of modern applications in IoT Covers topics such as machine learning, systems theory, linear algebra, digital signal processing, probability theory, state-space formulation, Bayesian estimation, Kalman filter, causality, and digital twins.