Linear Algebra and Learning from Data

Linear Algebra and Learning from Data

Author: Gilbert Strang

Publisher: Wellesley-Cambridge Press

Published: 2019-01-31

Total Pages: 0

ISBN-13: 9780692196380

DOWNLOAD EBOOK

Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.


Machine Learning for Signal Processing

Machine Learning for Signal Processing

Author: Max A. Little

Publisher: Oxford University Press, USA

Published: 2019

Total Pages: 378

ISBN-13: 0198714939

DOWNLOAD EBOOK

Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.


Practical Linear Algebra for Machine Learning

Practical Linear Algebra for Machine Learning

Author: Amirsina Torfi

Publisher:

Published: 2019-12-26

Total Pages: 64

ISBN-13: 9781651122631

DOWNLOAD EBOOK

Machine Learning is everywhere these days and a lot of fellows desire to learn it and even master it! This burning desire creates a sense of impatience. We are looking for shortcuts and willing to ONLY jump to the main concept. If you do a simple search on the web, you see thousands of people asking "How can I learn Machine Learning?", "What is the fastest approach to learn Machine Learning?", and "What are the best resources to start Machine Learning?" \textit. Mastering a branch of science is NOT just a feel-good exercise. It has its own requirements.One of the most critical requirements for Machine Learning is Linear Algebra. Basically, the majority of Machine Learning is working with data and optimization. How can you want to learn those without Linear Algebra? How would you process and represent data without vectors and matrices? On the other hand, Linear Algebra is a branch of mathematics after all. A lot of people trying to avoid mathematics or have the temptation to "just learn as necessary." I agree with the second approach, though. \textit: You cannot escape Linear Algebra if you want to learn Machine Learning and Deep Learning. There is NO shortcut.The good news is there are numerous resources out there. In fact, the availability of numerous resources made me ponder whether writing this book was necessary? I have been blogging about Machine Learning for a while and after searching and searching I realized there is a deficiency of an organized book which \textbf teaches the most used Linear Algebra concepts in Machine Learning, \textbf provides practical notions using everyday used programming languages such as Python, and \textbf be concise and NOT unnecessarily lengthy.In this book, you get all of what you need to learn about Linear Algebra that you need to master Machine Learning and Deep Learning.


Mathematics for Machine Learning

Mathematics for Machine Learning

Author: Marc Peter Deisenroth

Publisher: Cambridge University Press

Published: 2020-04-23

Total Pages: 392

ISBN-13: 1108569323

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Numerical Matrix Analysis

Numerical Matrix Analysis

Author: Ilse C. F. Ipsen

Publisher: SIAM

Published: 2009-07-23

Total Pages: 135

ISBN-13: 0898716764

DOWNLOAD EBOOK

Matrix analysis presented in the context of numerical computation at a basic level.


Linear Algebra, Signal Processing, and Wavelets - A Unified Approach

Linear Algebra, Signal Processing, and Wavelets - A Unified Approach

Author: Øyvind Ryan

Publisher: Springer

Published: 2019-03-05

Total Pages: 381

ISBN-13: 3030018121

DOWNLOAD EBOOK

This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.


Basics of Linear Algebra for Machine Learning

Basics of Linear Algebra for Machine Learning

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2018-01-24

Total Pages: 211

ISBN-13:

DOWNLOAD EBOOK

Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.


Mathematics of Big Data

Mathematics of Big Data

Author: Jeremy Kepner

Publisher: MIT Press

Published: 2018-08-07

Total Pages: 443

ISBN-13: 0262347911

DOWNLOAD EBOOK

The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools—including spreadsheets, databases, matrices, and graphs—developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.


Visual Group Theory

Visual Group Theory

Author: Nathan Carter

Publisher: American Mathematical Soc.

Published: 2021-06-08

Total Pages: 295

ISBN-13: 1470464330

DOWNLOAD EBOOK

Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.