Linear Algebra: Examples And Applications

Linear Algebra: Examples And Applications

Author: Alain M Robert

Publisher: World Scientific Publishing Company

Published: 2005-08-25

Total Pages: 387

ISBN-13: 9813101962

DOWNLOAD EBOOK

This short but rigorous book approaches the main ideas of linear algebra through carefully selected examples and relevant applications. It is intended for students with various interests in mathematics, as well as established scientists seeking to refresh their basic mathematical culture.The book is also a good introduction to functional analysis and quantum theory since it discusses the general principles of linear algebra without finiteness assumptions.


Linear Algebra As An Introduction To Abstract Mathematics

Linear Algebra As An Introduction To Abstract Mathematics

Author: Bruno Nachtergaele

Publisher: World Scientific Publishing Company

Published: 2015-11-30

Total Pages: 209

ISBN-13: 9814723797

DOWNLOAD EBOOK

This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.


Coding the Matrix

Coding the Matrix

Author: Philip N. Klein

Publisher:

Published: 2013-07

Total Pages: 530

ISBN-13: 9780615856735

DOWNLOAD EBOOK

An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.


Linear Algebra and Its Applications with R

Linear Algebra and Its Applications with R

Author: Ruriko Yoshida

Publisher: CRC Press

Published: 2021-06-27

Total Pages: 424

ISBN-13: 1000400247

DOWNLOAD EBOOK

This book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. These students tend not to realize the importance of linear algebra in applied sciences, since traditional linear algebra courses tend to cover mathematical contexts but not the computational aspect of linear algebra or its applications to data science and bioinformatics. The author presents the topics in a traditional course, yet offers lectures as well as lab exercises on simulated and empirical data sets. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications. Each section starts with working examples to demonstrate how tools from linear algebra can help solve problems in applied sciences. These exercises start from easy computations, such as computing determinants of matrices, to practical applications on simulated and empirical data sets with R so that students learn how to get started with R, along with computational examples in each section, and then students learn how to apply what they've learned to problems in applied sciences. This book is designed from first principles to demonstrate the importance of linear algebra through working computational examples with R and Python, including tutorials on how to install R in the Appendix. If a student has never seen R, they can get started without any additional help. Since Python is one of the most popular languages in data science, optimization, and computer science, code supplements are available for students who feel more comfortable with Python. R is used primarily for computational examples to develop students’ practical computational skills. About the Author: Dr. Ruriko Yoshida is an Associate Professor of Operations Research at the Naval Postgraduate School. She received her PhD in Mathematics from the University of California, Davis. Her research topics cover a wide variety of areas: applications of algebraic combinatorics to statistical problems such as statistical learning on non-Euclidean spaces, sensor networks, phylogenetics, and phylogenomics. She teaches courses in statistics, stochastic models, probability, and data science.


Numerical Linear Algebra with Applications

Numerical Linear Algebra with Applications

Author: William Ford

Publisher: Academic Press

Published: 2014-09-14

Total Pages: 629

ISBN-13: 0123947847

DOWNLOAD EBOOK

Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. - Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra - Detailed explanations and examples - A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra - Examples from engineering and science applications


Linear Algebra Done Right

Linear Algebra Done Right

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 1997-07-18

Total Pages: 276

ISBN-13: 9780387982595

DOWNLOAD EBOOK

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.


Thirty-three Miniatures

Thirty-three Miniatures

Author: Jiří Matoušek

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 196

ISBN-13: 0821849778

DOWNLOAD EBOOK

This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)


Linear Algebra: Theory and Applications

Linear Algebra: Theory and Applications

Author: Kenneth Kuttler

Publisher: The Saylor Foundation

Published: 2012-01-29

Total Pages: 503

ISBN-13:

DOWNLOAD EBOOK

This is a book on linear algebra and matrix theory. While it is self contained, it will work best for those who have already had some exposure to linear algebra. It is also assumed that the reader has had calculus. Some optional topics require more analysis than this, however. I think that the subject of linear algebra is likely the most significant topic discussed in undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying so many different topics. Linear algebra is essential in analysis, applied math, and even in theoretical mathematics. This is the point of view of this book, more than a presentation of linear algebra for its own sake. This is why there are numerous applications, some fairly unusual.


Essential Linear Algebra with Applications

Essential Linear Algebra with Applications

Author: Titu Andreescu

Publisher: Springer

Published: 2014-10-14

Total Pages: 498

ISBN-13: 0817646361

DOWNLOAD EBOOK

Rooted in a pedagogically successful problem-solving approach to linear algebra, the present work fills a gap in the literature that is sharply divided between elementary texts and books that are too advanced to appeal to a wide audience. It clearly develops the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality, while simultaneously emphasizing applications and connections to fields such as biology, economics, computer graphics, electrical engineering, cryptography, and political science. Ideal as an introduction to linear algebra, the extensive exercises and well-chosen applications also make this text suitable for advanced courses at the junior or senior undergraduate level. Furthermore, it can serve as a colorful supplementary problem book, reference, or self-study manual for professional scientists and mathematicians. Complete with bibliography and index, "Essential Linear Algebra with Applications" is a natural bridge between pure and applied mathematics and the natural and social sciences, appropriate for any student or researcher who needs a strong footing in the theory, problem-solving, and model-building that are the subject’s hallmark.


Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra

Author: Stephen Boyd

Publisher: Cambridge University Press

Published: 2018-06-07

Total Pages: 477

ISBN-13: 1316518965

DOWNLOAD EBOOK

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.