This book highlights new cross-disciplinary advances in aerosol chemistry that involve more than one phase, for example, unique chemical processes occurring on gas-solid and liquid-solid interfaces.
An important guide that highlights the multiphase chemical processes for students and professionals who want to learn more about aerosol chemistry Atmospheric Multiphase Reaction Chemistry provides the information and knowledge of multiphase chemical processes and offers a review of the fundamentals on gas-liquid equilibrium, gas phase reactions, bulk aqueous phase reactions, and gas-particle interface reactions related to formation of secondary aerosols. The authors—noted experts on the topic—also describe new particle formation, and cloud condensation nuclei activity. In addition, the text includes descriptions of field observations on secondary aerosols and PM2.5. Atmospheric aerosols play a critical role in air quality and climate change. There is growing evidence that the multiphase reactions involving heterogeneous reactions on the air-particle interface and the reactions in the bulk liquid phase of wet aerosol and cloud/fog droplets are important processes forming secondary aerosols in addition to gas-phase oxidation reactions to form low-volatile compounds. Comprehensive in scope, the book offers an understanding of the topic by providing a historical overview of secondary aerosols, the fundamentals of multiphase reactions, gas-phase reactions of volatile organic compounds, aqueous phase and air-particle interface reactions of organic compound. This important text: Provides knowledge on multiphase chemical processes for graduate students and research scientists Includes fundamentals on gas-liquid equilibrium, gas phase reactions, bulk aqueous phase reactions, and gas-particle interface reactions related to formation of secondary aerosols Covers in detail reaction chemistry of secondary organic aerosols Written for students and research scientists in atmospheric chemistry and aerosol science of environmental engineering, Atmospheric Multiphase Reaction Chemistry offers an essential guide to the fundamentals of multiphase chemical processes.
Many satellites have recently been launched or are in preparation, which operate in the microwave to IR ranges, the main objective being to observe the earth's atmosphere or interstellar clouds. Analysis of the data they supply requires extensive laboratory work because we still only have sufficiently accurate data (line positions, intensities, and profiles) for only a few species. Furthermore, the observer community is making increasing calls for laboratory data, as new development open up new observational possibilities (such as submillimeter observation). Research on these subjects involves many different areas of specialisation in fields of research that generate a wealth of data. In Spectroscopy from Space the people responsible for field observations explain which results they are expecting from their measurements and how laboratory people can help them to analyse their satellite data. Laboratory spectroscopists explain why what they can do now, and what kinds of experiment and theoretical development that might undertake to meet the needs of the remote sensing community. The problems of distributing reliable laboratory data in a timely way are also addressed.
The book is divided into two sections. The first section presents characterization of atmospheric aerosols and their impact on regional climate from East Asia to the Pacific. Ground-based, air-born, and satellite data were collected and analyzed. Detailed information about measurement techniques and atmospheric conditions were provided as well. In the second section, authors provide detailed information about the organic and inorganic constituents of atmospheric aerosols. They discuss the chemical and physical processes, temporal and spatial distribution, emissions, formation, and transportation of aerosol particles. In addition, new measurement techniques are introduced. This book hopes to serve as a useful resource to resolve some of the issues associated with the complex nature of the interaction between atmospheric aerosols and climatology.
Atmospheric Aerosols is a vital problem in current environmental research due to its importance in atmospheric optics, energetics, radiative transfer studies, chemistry, climate, biology and public health. Aerosols can influence the energy balance of the terrestrial atmosphere, the hydrological cycle, atmospheric dynamics and monsoon circulations. Because of the heterogeneous aerosol field with large spatial and temporal variability and reduction in uncertainties in aerosol quantification is a challenging task in atmospheric sciences. Keeping this in view the present study aims to assess the impact of aerosols on coastal Indian station Visakhapatnam and the adjoining Bay of Bengal. An aerosol is a colloid of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or not. Examples of natural aerosols are fog, forest exudates and geyser steam.
This text reviews many of the aspects of the chemistry of the aromatic hydrocarbons and a consensus evaluation of the data by seven of the leading atmospheric scientists. The book covers topics ranging from the relative importance of the compounds in ozone and haze development to methods of estimating elemantary rate coefficients based on structural features of the compounds to mechanisms of aerosol generation and atmostpheric reaction of the polycyclic compounds to photochemical processes. It identifies features of the aromatic hydrocarbons requiring further study and appendicies give the structural formulas and nomenclature of the compounds reviewed in the book.
Thoroughly restructured and updated with new findings and new features The Second Edition of this internationally acclaimed text presents the latest developments in atmospheric science. It continues to be the premier text for both a rigorous and a complete treatment of the chemistry of the atmosphere, covering such pivotal topics as: * Chemistry of the stratosphere and troposphere * Formation, growth, dynamics, and properties of aerosols * Meteorology of air pollution * Transport, diffusion, and removal of species in the atmosphere * Formation and chemistry of clouds * Interaction of atmospheric chemistry and climate * Radiative and climatic effects of gases and particles * Formulation of mathematical chemical/transport models of the atmosphere All chapters develop results based on fundamental principles, enabling the reader to build a solid understanding of the science underlying atmospheric processes. Among the new material are three new chapters: Atmospheric Radiation and Photochemistry, General Circulation of the Atmosphere, and Global Cycles. In addition, the chapters Stratospheric Chemistry, Tropospheric Chemistry, and Organic Atmospheric Aerosols have been rewritten to reflect the latest findings. Readers familiar with the First Edition will discover a text with new structures and new features that greatly aid learning. Many examples are set off in the text to help readers work through the application of concepts. Advanced material has been moved to appendices. Finally, many new problems, coded by degree of difficulty, have been added. A solutions manual is available. Thoroughly updated and restructured, the Second Edition of Atmospheric Chemistry and Physics is an ideal textbook for upper-level undergraduate and graduate students, as well as a reference for researchers in environmental engineering, meteorology, chemistry, and the atmospheric sciences. Click here to Download the Solutions Manual for Academic Adopters: http://www.wiley.com/WileyCDA/Section/id-292291.html
Terpenoids play an important part in all our lives, from Vitamin A and hormones to perfumes and pharmaceuticals. This book provides an introduction to terpenoid chemistry, concentrating on the lower terpenoids, but the basic principles taught are also the foundation for the chemistry of the higher terpenoids. Coverage includes: the biogenesis of terpenoids; some of the history of the field; the principles of structural determination; and the importance of stereochemistry and stereoselective synthesis. Carbocation chemistry is introduced, as are the principles of total and partial synthesis. Finally, industrial chemistry (both discovery chemistry and chemical process development) is discussed, using the volatile terpenoids of perfumery to illustrate basic concepts. Ideal as both an introduction to terpenoid chemistry and as a refresher course, A Fragrant Introduction to Terpenoid Chemistry, with its real-life problems and appreciation of the relevance of chemistry to everyday life, will prove invaluable to students, lecturers and industrialists alike.
Helping you better understand the processes, instruments, and methods of aerosol spectroscopy, Fundamentals and Applications in Aerosol Spectroscopy provides an overview of the state of the art in this rapidly developing field. It covers fundamental aspects of aerosol spectroscopy, applications to atmospherically and astronomically relevant problem
Plants produce a huge array of natural products (secondary metabolites). These compounds have important ecological functions, providing protection against attack by herbivores and microbes and serving as attractants for pollinators and seed-dispersing agents. They may also contribute to competition and invasiveness by suppressing the growth of neighboring plant species (a phenomenon known as allelopathy). Humans exploit natural products as sources of drugs, flavoring agents, fragrances and for a wide range of other applications. Rapid progress has been made in recent years in understanding natural product synthesis, regulation and function and the evolution of metabolic diversity. It is timely to bring this information together with contemporary advances in chemistry, plant biology, ecology, agronomy and human health to provide a comprehensive guide to plant-derived natural products. Plant-derived natural products: synthesis, function and application provides an informative and accessible overview of the different facets of the field, ranging from an introduction to the different classes of natural products through developments in natural product chemistry and biology to ecological interactions and the significance of plant-derived natural products for humans. In the final section of the book a series of chapters on new trends covers metabolic engineering, genome-wide approaches, the metabolic consequences of genetic modification, developments in traditional medicines and nutraceuticals, natural products as leads for drug discovery and novel non-food crops.