Limit Distributions for Sums of Independent Random Variables

Limit Distributions for Sums of Independent Random Variables

Author: B V (Boris Vladimirovich) Gnedenko

Publisher: Hassell Street Press

Published: 2021-09-09

Total Pages: 284

ISBN-13: 9781014649485

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


Sums of Independent Random Variables

Sums of Independent Random Variables

Author: V.V. Petrov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 360

ISBN-13: 3642658091

DOWNLOAD EBOOK

The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity


Limit Distributions for Sums of Independent Random Vectors

Limit Distributions for Sums of Independent Random Vectors

Author: Mark M. Meerschaert

Publisher: John Wiley & Sons

Published: 2001-07-11

Total Pages: 514

ISBN-13: 9780471356295

DOWNLOAD EBOOK

Die Quintessenz aus über 100 Originalarbeiten! Ausgehend von den Grundpfeilern der modernen Wahrscheinlichkeitstheorie entwickeln die Autoren dieses in sich geschlossenen, gut verständlich formulierten Bandes die Theorie der unendlich teilbaren Verteilungen und der regulären Variation. Im Anschluss erarbeiten sie die allgemeine Grenzwerttheorie für unabhängige Zufallsvektoren. Dabei achten sie sorgfältig darauf, alle Aspekte in den Kontext der Wahrscheinlichkeitslehre und Statistik zu stellen und bieten dafür eine Fülle von Zusatzinformationen an.


Uniform Limit Theorems for Sums of Independent Random Variables

Uniform Limit Theorems for Sums of Independent Random Variables

Author: Taĭvo Viktorovich Arak

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 236

ISBN-13: 9780821831182

DOWNLOAD EBOOK

Among the diverse constructions studied in modern probability theory, the scheme for summation of independent random variables occupies a special place. This book presents a study of distributions of sums of independent random variables with minimal restrictions imposed on their distributions.


Introductory Statistics 2e

Introductory Statistics 2e

Author: Barbara Illowsky

Publisher:

Published: 2023-12-13

Total Pages: 2106

ISBN-13:

DOWNLOAD EBOOK

Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.


High-Dimensional Probability

High-Dimensional Probability

Author: Roman Vershynin

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 299

ISBN-13: 1108415199

DOWNLOAD EBOOK

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.


A History of the Central Limit Theorem

A History of the Central Limit Theorem

Author: Hans Fischer

Publisher: Springer Science & Business Media

Published: 2010-10-08

Total Pages: 415

ISBN-13: 0387878572

DOWNLOAD EBOOK

This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.


Fundamentals of Applied Probability and Random Processes

Fundamentals of Applied Probability and Random Processes

Author: Oliver Ibe

Publisher: Academic Press

Published: 2014-06-13

Total Pages: 457

ISBN-13: 0128010355

DOWNLOAD EBOOK

The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. - Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings - Expands readers' understanding of disruptive statistics in a new chapter (chapter 8) - Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. - Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).