Advances in Light Water Reactor Technologies focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested in learning the fundamentals of advanced light water plants.
Net-Zero and Low Carbon Solutions for the Energy Sector Guide to choosing and investing in decarbonization technologies for the energy sector Net-Zero and Low Carbon Solutions for the Energy Sector proposes mature (high technology readiness level) net-zero and low carbon pathways and technologies in the energy sector, discussing net-/near-zero solutions for producing and storing power, heat, biofuel, and hydrogen, and highlighting various pathways and processes to achieve net-zero targets and address climate concerns. Each chapter provides a relevant case study to aid in the practical application of concepts, covering decarbonization solutions that have high potential to be used in the near future, such as solar-hybrid systems for net-zero power generation, CCUS-hybrid systems for low carbon power generation, pumped hydropower for power storage, commercial concentrating solar power plants for heat generation, gasification with CCUS for biofuel production, hybrid thermochemical process for hydrogen production, and more. Written from the perspective of firsthand research experience in the field, this book includes information on: Net-zero power generation via solar, wind, hydropower, geothermal, hydrogen, and marine processes Near-zero power generation via nuclear, coal, natural gas, biomass, and ammonia processes Mechanical and battery-based power storage and heat storage via physical and thermochemical processes Near-zero heat generation processes and biofuels production, including biogas, biomethane, bioethanol, and biodiesel Hydrogen production via electrolysis and thermochemical processes with CCUS and low-emission technologies for hydrogen storage Net-Zero and Low Carbon Solutions for the Energy Sector is a valuable resource for business professionals, academics, and policy makers who are active in contributing to net-zero emissions targets for keeping the atmospheric CO2 levels in an acceptable range.
Part of the government series on energy, from TheCapitol.Net, this text discusses the nuclear energy issues facing Congress including federal incentives for new commercial reactors, radioactive waste management policy, research and development priorities, power plant safety and regulation, nuclear weapons proliferation, and security against terrorist attacks.
This book brings together studies broadly dealing with human error from different disciplines and perspectives. They concern human performance; human variability and reliability analysis; medical, driver and pilot error, as well as automation error; reports on root cause analyses; and the cognitive modeling of human error. In addition, they highlight cutting-edge applications in safety management, defense, security, transportation, process controls, and medicine, as well as more traditional fields of application. Based on the AHFE 2017 International Conference on Human Error, Reliability, Resilience, and Performance, held on July 17–21, 2017 in Los Angeles, California, USA, the book includes experimental papers, original reviews, and reports on case studies, as well as meta-analyses, technical guidelines, best practice and methodological papers. It offers a timely reference guide for researchers and practitioners dealing with human error in a diverse range of fields. “p>
Light water reactors (LWRs) are the predominant class of nuclear power reactors in operation today; however, ageing and degradation can influence both their performance and lifetime. Knowledge of these factors is therefore critical to safe, continuous operation. Materials ageing and degradation in light water reactors provides a comprehensive guide to prevalent deterioration mechanisms, and the approaches used to handle their effects.Part one introduces fundamental ageing issues and degradation mechanisms. Beginning with an overview of ageing and degradation issues in LWRs, the book goes on to discuss corrosion in pressurized water reactors and creep deformation of materials in LWRs. Part two then considers materials' ageing and degradation in specific LWR components. Applications of zirconium alloys in LWRs are discussed, along with the ageing of electric cables. Materials management strategies for LWRs are then the focus of part three. Materials management strategies for pressurized water reactors and VVER reactors are considered before the book concludes with a discussion of materials-related problems faced by LWR operators and corresponding research needs.With its distinguished editor and international team of expert contributors, Materials ageing and degradation in light water reactors is an authoritative review for anyone requiring an understanding of the performance and durability of this type of nuclear power plant, including plant operators and managers, nuclear metallurgists, governmental and regulatory safety bodies, and researchers, scientists and academics working in this area. - Introduces the fundamental ageing issues and degradation mechanisms associated with this class of nuclear power reactors - Considers materials ageing and degradation in specific light water reactor components, including properties, performance and inspection - Chapters also focus on material management strategies