Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
Translation from the 1987 Russia edition. These proceedings address issues in solid state optics and physics: Raman scattering in crystals and dispersive media, Rayleigh and inelastic scattering with phase transitions, the features of ferroelectrics in connection with the general concept of soft mod
The Second USA-USSR Symposium on Light Scattering in Con densed Matter was held in New York City 21-25 May 1979. The present volume is the proceedings of that conference, and contains all manuscripts received prior to 1 August 1979, representing scientific contributions presented. A few manus cripts were not received, but for completeness the corresponding abstract is printed. No record was kept of the discussion, so that some of the flavor of the meeting is missing. This is par ticularly unfortunate in the case of some topics which were in a stage of rapid development and where the papers presented sti mulated much discussion - such as the sessions on spatial dis persion and resonance inelastic (Brillouin or Raman) scattering in crystals, enhanced Raman scattering from molecules on metal surfaces, and the onset of turbulence in fluids. The background and history of the US-USSR Seminar-Symposia on light scattering was given in the preface to the proceedings of the First Symposium held in Moscow May 1975, published as "Theory of Light Scattering in Condensed Matter" ed. B. Bendow, J. L. Birman, V. M. Agranovich (Plenum Press, N. Y. 1976). Strong scientific interest on both sides in continuing this series resulted in a plan for the second symposium to be held in New York in 1977. For a variety of reasons it was necessary to cancel the planned 1977 event, almost at the last minute.
The International Conference on Light Scattering Spectra of Solids was held at New York University on September 3, 4, 5, 6, 1968. The Conference received financial support from the U. S. Army Research Office (Durham), The New York State Science and Technology Foundation, the U. S. Office of Naval Research, and The Graduate School of Arts and Sciences of New York University. Co-sponsoring the Conference was the International Union of Pure and Applied Physics. The initial conception for the Light Scattering Conference arose from informal discussions held by Professor Eli Burstein, Professor Marvin Silver (representing the U. S. Army Research Office) and Professor Joseph Birman, late in 1966. In early discussions a format was put forth for a meeting to be held the following year, re viewing the state of the art, and emphasizing novel developments which had 9ccurred since the 1965 International Colloquium on Scattering Spectra of Crystals held in Paris (proceedings published in Le Journal de Physique, Volume 26, November 1965).
Physics and Astrophysics discusses some major problems concerned with macrophysics. Such topics as the controlled thermonuclear fusion, high- temperature superconductivity, and metallic exciton liquid in semiconductors are covered. The definition and elements related to microphysics are discussed. This section focuses on mass spectrum, quarks and gluons, and the interaction of particles at high and super high energies. The book gives a brief overview of the general theory of relativity. The production and origin of gravitational waves are discussed in detail. Cosmology is the study of space and time on a large scale. This definition was made as an introduction to the chapter that focuses on the cosmological problems, quasars and galactic nuclei, and formation of galaxies. The necessity of new physics in astronomy is also considered. The text includes a section on the physics of black holes, neutrons stars, and pulsars. The book will provide useful information to physicists, cosmologists, engineers, students, and researchers in the field of physics.
Scattering is the collision of two objects that results in a change of trajectory and energy. For example, in particle physics, such as electrons, photons, or neutrons are "scattered off" of a target specimen, resulting in a different energy and direction. In the field of electromagnetism, scattering is the random diffusion of electromagnetic radiation from air masses is an aid in the long-range sending of radio signals over geographic obstacles such as mountains. This type of scattering, applied to the field of acoustics, is the spreading of sound in many directions due to irregularities in the transmission medium. Volume I of Scattering will be devoted to basic theoretical ideas, approximation methods, numerical techniques and mathematical modeling. Volume II will be concerned with basic experimental techniques, technological practices, and comparisons with relevant theoretical work including seismology, medical applications, meteorological phenomena and astronomy. This reference will be used by researchers and graduate students in physics, applied physics, biophysics, chemical physics, medical physics, acoustics, geosciences, optics, mathematics, and engineering. This is the first encyclopedic-range work on the topic of scattering theory in quantum mechanics, elastodynamics, acoustics, and electromagnetics. It serves as a comprehensive interdisciplinary presentation of scattering and inverse scattering theory and applications in a wide range of scientific fields, with an emphasis, and details, up-to-date developments. Scattering also places an emphasis on the problems that are still in active current research. The first interdisciplinary reference source on scattering to gather all world expertise in this technique Covers the major aspects of scattering in a common language, helping to widening the knowledge of researchers across disciplines The list of editors, associate editors and contributors reads like an international Who's Who in the interdisciplinary field of scattering
Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process. This text, intended for readers with some prior knowledge of condensed-matter physics, emphasizes the basic physics behind such spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the book discusses the nature of order variables and their collective motion in a crystal lattice; in a structural phase transition a singularity in such a collective mode is responsible for the lattice instability, as revealed by soft phonons. This mechanism is analogous to the interplay of a charge-density wave and a periodically deformed lattice in low-dimensional conductors. The text also describes experimental methods for modulated crystal structures and gives examples of structural changes in representative systems. The book is divided into two parts. The first, theoretical, part includes such topics as: the Landau theory of phase transitions; statistics, correlations and the mean-field approximation; pseudospins and their collective modes; soft lattice modes and pseudospin condensates; lattice imperfections and their role in the phase transitions of real crystals. The second part discusses experimental studies of modulated crystals using x-ray diffraction, neutron inelastic scattering, light scattering, dielectric measurements, and magnetic resonance spectroscopy.
The papers in this volume represent most of the contributions to the Symposium on the Physics of Opto-Electronic Materials held at the General Motors Research Lab oratories in Warren, Michigan, on October 4, 5 and 6, 1970. The purpose of this Symposium was to examine the current status of knowledge related to the controlled alteration of the optical properties of solids through exter nally-applied agencies, with the aim of assessing possible future directions of scientific effort to achieve efficient, practical control of light. Since the advent of the laser, the scientific community has been motivated to explore, with a renewed vigor, methods of modulating light, and in the last decade several applications of the electrooptic effect in single crystal solids have been real ized. During this same period of time the list of recognized optical modulation ef fects in solids (exclusive of the ordinary electrooptic effects) has grown rapidly, and recently dramatic demonstrations of light modulation by liquid crystal and ferro electric ceramic materials have captured the attention of the scientific community. Unlike the single-crystal electrooptic effects which are quite suitable for modulation of coherent laser light, these latter materials promise relatively inexpensive approaches to the modulation of light from ordinary incoherent light sources. It was these new vistas of light modulation - and how they fit into our current understanding of the optical properties of solids - that the symposium addressed.
Inelastic Light Scattering documents the proceedings of the 1979 US-Japan Seminar held at Santa Monica, California, USA, 22-25 January 1979. The seminar is one of a continuing series of seminars on ""Current Developments in Science,"" which are jointly sponsored by the United States National Science Foundation and the Japan Society for the Promotion of Science as part of the United States-Japan Cooperative Science Program. These joint seminars provide a medium for personal interactions between theorists and experimentalists from the two countries. The aim of the joint seminar on inelastic light scattering was to organize a program which would focus on important theoretical and experimental developments that reflect the complementarity of Japanese and US efforts in this important field. The topics covered by the papers presented at the seminar include resonant Raman scattering and luminescence; light scattering under intense illumination; resonant Brillouin scattering and non-local optics; enhanced Raman scattering by molecules adsorbed in metals; inelastic light scattering in superionic conductors and in glasses; Raman scattering by soft modes in IV-VI compound semiconductor and ferroelectrics; and central peaks in inelastic light scattering at structural phase transitions.