Characterization and Properties of Petroleum Fractions

Characterization and Properties of Petroleum Fractions

Author: M. R. Riazi

Publisher: ASTM International

Published: 2005

Total Pages: 425

ISBN-13: 9780803133617

DOWNLOAD EBOOK

The last three chapters of this book deal with application of methods presented in previous chapters to estimate various thermodynamic, physical, and transport properties of petroleum fractions. In this chapter, various methods for prediction of physical and thermodynamic properties of pure hydrocarbons and their mixtures, petroleum fractions, crude oils, natural gases, and reservoir fluids are presented. As it was discussed in Chapters 5 and 6, properties of gases may be estimated more accurately than properties of liquids. Theoretical methods of Chapters 5 and 6 for estimation of thermophysical properties generally can be applied to both liquids and gases; however, more accurate properties can be predicted through empirical correlations particularly developed for liquids. When these correlations are developed with some theoretical basis, they are more accurate and have wider range of applications. In this chapter some of these semitheoretical correlations are presented. Methods presented in Chapters 5 and 6 can be used to estimate properties such as density, enthalpy, heat capacity, heat of vaporization, and vapor pressure. Characterization methods of Chapters 2-4 are used to determine the input parameters needed for various predictive methods. One important part of this chapter is prediction of vapor pressure that is needed for vapor-liquid equilibrium calculations of Chapter 9.


Hydrotreatment and Hydrocracking of Oil Fractions

Hydrotreatment and Hydrocracking of Oil Fractions

Author: B. Delmon

Publisher: Elsevier

Published: 1997-01-20

Total Pages: 594

ISBN-13: 008053435X

DOWNLOAD EBOOK

The symposium on Hydrotreatment and Hydrocracking of Oil Fractions aims to provide a global perspective and an inspection of the state-of-the-art of these processes. New American, European and Japanese environmental regulations call for advanced hydrotreatment processes for HDS and HDN for the removal of S- and Ni-components from oil fractions. These will alter the product slate of the oil refineries and the hydrocarbon composition of these products. Hydrocracking will play an important part in this shift.Adapting the operating conditions will not suffice to reach the desired product specifications and yields. Adequate catalysts will have to be developed. Powerful tools are now available for this, e.g. surface science techniques, molecular modeling and new types of reactors operated in a nonsteady mode.Another instrument in the improvement of hydrotreatment and hydrocracking units is the availability of more realistic kinetic models. These are based on a judicious insight into the reaction mechanism, also provided by the above-mentioned tools. Progress in the analytical techniques has allowed the reduction of the lumping of components in these kinetic models and first order kinetic equations are gradually replaced by equations accounting for the adsorption of the various components.More detailed and more realistic reactor models are now based on rigorous hydrodynamic models and their application has become possible through the rapidly increasing possibilities of computers.