The 1st edition of the book “Light-Emitting Diodes” was published in 2003. The 2nd edition was published in 2006. The 3rd edition was published in 2018. The current edition, the 2023 edition, is the most recent update of the book. The book is a thorough discussion of LEDs, particularly its semiconductor physics, electrical, optical, material science, thermal, mechanical, and chemical foundations. The book presents many fundamental aspects of LED technology and includes an in-depth discussion of white light-emitting diodes (LEDs), phosphor materials used in white LEDs, packaging technology, and the various efficiencies and efficacies encountered in the context of LEDs. The background of light, color science, and human vision is provided as well. The fully colored illustrations of the current edition are beneficial given the prominent role of light and color in the field of LEDs. The current edition is published in electronic PDF format in order to make the book affordable and easily accessible to a wide readership.
LED Lighting is a self-contained and introductory-level book featuring a blend of theory and applications that thoroughly covers this important interdisciplinary area. Building on the underlying fields of optics, photonics, and vision science, it comprises four parts. PART I is devoted to fundamentals. The behavior of light is described in terms of rays, waves, and photons. Each of these approaches is best suited to a particular set of applications. The properties of blackbody radiation, thermal light, and incandescent light are derived and explained. The essentials of semiconductor physics are set forth, including the operation of junctions and heterojunctions, quantum wells and quantum dots, and organic and perovskite semiconductors. PART II deals with the generation of light in semiconductors, and details the operation and properties of III-V semiconductor devices (MQWLEDs and μLEDs), quantum-dot devices (QLEDs & WOLEDs), organic semiconductor devices (OLEDs, SMOLEDs, PLEDs, & WOLEDs), and perovskite devices (PeLEDs, PPeLEDs, QPeLEDs, & PeWLEDs). PART III focuses on vision and the perception of color, as well as on colorimetry. It delineates radiometric and photometric quantities as well as efficacy and efficiency measures. It relays the significance of metrics often encountered in LED lighting, including the color rendering index (CRI), color temperature (CT), correlated color temperature (CCT), and chromaticity diagram. PART IV is devoted to LED lighting, focusing on its history and salutary features, and on how this modern form of illumination is deployed. It describes the principal components used in LED lighting, including white phosphor-conversion LEDs, chip-on-board (COB) devices, color-mixing LEDs, hybrid devices, LED filaments, retrofit LED lamps, LED luminaires, and OLED light panels. It concludes with a discussion of smart lighting and connected lighting. Each chapter contains highlighted equations, color-coded figures, practical examples, and reading lists.
Manhattan Prep's best-selling 5 lb. Book of GRE Practice Problems has been updated to include a brand-new chapter targeting critical math strategies you'll need to maximize your GRE quant score. In addition the book now includes expanded diagnostic chapters that teach you how to analyze your strengths and weaknesses and prioritize your studies accordingly. The heart of the book is over 1,800 practice problems covering every topic tested on the GRE, making it an essential resource for students at any level.
SAFETY AND HEALTH FOR ENGINEERS A comprehensive resource for making products, facilities, processes, and operations safe for workers, users, and the public Ensuring the health and safety of individuals in the workplace is vital on an interpersonal level but is also crucial to limiting the liability of companies in the event of an onsite injury. The Bureau of Labor Statistics reported over 4,700 fatal work injuries in the United States in 2020, most frequently in transportation-related incidents. The same year, approximately 2.7 million workplace injuries and illnesses were reported by private industry employers. According to the National Safety Council, the cost in lost wages, productivity, medical and administrative costs is close to 1.2 trillion dollars in the US alone. It is imperative—by law and ethics—for engineers and safety and health professionals to drive down these statistics by creating a safe workplace and safe products, as well as maintaining a safe environment. Safety and Health for Engineers is considered the gold standard for engineers in all specialties, teaching an understanding of many components necessary to achieve safe workplaces, products, facilities, and methods to secure safety for workers, users, and the public. Each chapter offers information relevant to help safety professionals and engineers in the achievement of the first canon of professional ethics: to protect the health, safety, and welfare of the public. The textbook examines the fundamentals of safety, legal aspects, hazard recognition and control, the human element, and techniques to manage safety decisions. In doing so, it covers the primary safety essentials necessary for certification examinations for practitioners. Readers of the fourth edition of Safety and Health for Engineers readers will also find: Updates to all chapters, informed by research and references gathered since the last publication The most up-to-date information on current policy, certifications, regulations, agency standards, and the impact of new technologies, such as wearable technology, automation in transportation, and artificial intelligence New international information, including U.S. and foreign standards agencies, professional societies, and other organizations worldwide Expanded sections with real-world applications, exercises, and 164 case studies An extensive list of references to help readers find more detail on chapter contents A solution manual available to qualified instructors Safety and Health for Engineers is an ideal textbook for courses in safety engineering around the world in undergraduate or graduate studies, or in professional development learning. It also is a useful reference for professionals in engineering, safety, health, and associated fields who are preparing for credentialing examinations in safety and health.
In this valuable reference work, Ichiro Fujieda focuses on the component technologies, device configurations, and operation principles of image acquisition and display technologies and provides detailed use cases to give practical guidance on the various current and potential future applications of these technologies. The technology and the physics behind these devices can be grouped into three categories: optical technology, material science, and semiconductor device technology. This book enables readers to gain an understanding of these three areas in relation to the flow of image information and several example applications of the technology. Fujieda first describes the building blocks of image sensors and displays (detectors, light sources, transistors, and wavefront control devices) and their configurations, operation principles, and characteristics. He then describes in more detail image sensor technology (including MOS image sensors, CCD technologies, and X-ray and infrared imagers) and displays (including thin-film transistor arrays, LCDs, OLEDs, MEMS devices, and more). Finally, he provides real-world examples of how these technologies are used together to give the reader an understanding of their practical applications and their potential use in future devices. Some important laws in optics and definitions in color science are included for easy reference. Through this approach, the reader will gain a detailed understanding of each of the component parts of existing imaging devices and will be able to apply this to future developments within the field. This book will benefit any advanced undergraduate and graduate student and industry professional who wishes to expand his or her understanding of the hardware handling digital images. Some basic knowledge is required on semiconductor device physics and the interaction of radiation with matter, though these are described in the appropriate sections.
Food Packaging and Preservation: Antimicrobial Materials and Technologies provides a scaffolded introduction to principles of biological science (food contamination and their effect on human health) as well as nanomaterials, natural antimicrobials and emerging non-thermal processing methods. The book's goal is to help users develop sustainable usage of these materials and technologies. It is designed to help researchers in food technology, materials science, nanoscience, and polymer science, but it will also be ideal for researchers and developers who develop antimicrobial technologies for food industry applications, in particular food packaging and the preservation of food products. - Thoroughly explores the application of nanomaterials, nanocomposites, antimicrobial materials from natural sources, and emerging non-thermal processing technologies - Covers nanomaterials, natural extracts and their usage in micro and nanoemulsion form - Examines non- thermal processing methods and their combinations for food packaging and food preservation
A full-color, case-based guide to effectively managing airway difficulties—updated to reflect the latest guidelines, devices, and techniques Written by the creators of the Difficult Airway Course: AnesthesiaTM and presented in full-color, this trusted resource covers the latest guidelines, leading-edge principles, tools, and procedures of airway assessment and management. Multidisciplinary in scope, the book encompasses the key areas of anesthesia, hospitalists, intensivists, emergency medicine, and paramedicine. Updated and revised, this fourth edition includes the most current review available of the many innovations that been introduced since publication of the previous edition. This is accompanied by a thorough review of the pharmacology of airway management designed to help you understand how to achieve the desired effects on ventilation and muscle strength. You'll find expert advice and strategies for treating patients in a range of settings, from pre-hospital care to the ER, as well as proven techniques for special patient populations. Hung's Management of the Difficult and Failed Airway, Fourth Edition features: Skill-building, case-based approach that highlights that the right tools and techniques Comprehensive review of the difficult or failed airway Chapter-ending questions that reinforce learning and allow you to assess your knowledge Dozens of airway management vignettes covering the intensive care unit, operating room, pediatric population, emergency room, and more New: 15 additional chapters New: Coverage on managing COVID-19 patients New: Content focused on standard of care in a global crisis in critical care Full-color illustrations
Quantum dots: Emerging materials for versatile applications is an introduction to the fundamentals and important advances of research of this important category of semiconductor nanostructured materials. After a brief review of relevant nanotechnology concepts and the unique properties of nanomaterials, the book describes the fundamentals of quantum dots with definitions of the primary classifications of quantum dots. There is an emphasis on practical considerations of the commercial translation of quantum dots such as their toxicity, stability, and disposal. Moreover, the book focuses on a review of the advances in research in emerging quantum dot materials along with the latest innovations in materials design and fabrication methods. Quantum Dots is suitable for materials scientists and engineers in academia or industry R&D who are looking for an introduction to this research topic or a key reference on the latest advances and applications. - Introduces the primary classifications, properties, synthesis, characterization and fabrication strategies of quantum dots - Reviews the latest applications of quantum dots for LEDs, displays, energy storage devices, photovoltaic cells, medicine, and more - Discusses the practical barriers to commercial translation of quantum dots, including toxicity, stability, and their safe disposal
The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.
The Handbook of Green and Sustainable Nanotechnology presents sustainable and green technologies for the development of products and processes which are environmental friendly, economically sustainable, safe, energy-efficient, decrease waste and diminish greenhouse gas emissions. It provides the overall spectrum of fundamentals, development and applications of sustainable and green technologies. Topics such as legal, health and safety issues are discussed as well. The book elucidates paths to real time utilization of green and sustainable nanotechnology at commercial scale.