Lie Theory

Lie Theory

Author: Jean-Philippe Anker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 341

ISBN-13: 0817681922

DOWNLOAD EBOOK

* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.


Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations

Author: Brian Hall

Publisher: Springer

Published: 2015-05-11

Total Pages: 452

ISBN-13: 3319134671

DOWNLOAD EBOOK

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette


Naive Lie Theory

Naive Lie Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

Published: 2008-12-15

Total Pages: 230

ISBN-13: 038778215X

DOWNLOAD EBOOK

In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).


Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory

Author: J.E. Humphreys

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 189

ISBN-13: 1461263980

DOWNLOAD EBOOK

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.


Clifford Algebras and Lie Theory

Clifford Algebras and Lie Theory

Author: Eckhard Meinrenken

Publisher: Springer Science & Business Media

Published: 2013-02-28

Total Pages: 331

ISBN-13: 3642362168

DOWNLOAD EBOOK

This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.


Lie Groups, Physics, and Geometry

Lie Groups, Physics, and Geometry

Author: Robert Gilmore

Publisher: Cambridge University Press

Published: 2008-01-17

Total Pages: 5

ISBN-13: 113946907X

DOWNLOAD EBOOK

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.


Emergence of the Theory of Lie Groups

Emergence of the Theory of Lie Groups

Author: Thomas Hawkins

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 578

ISBN-13: 1461212022

DOWNLOAD EBOOK

The great Norwegian mathematician Sophus Lie developed the general theory of transformations in the 1870s, and the first part of the book properly focuses on his work. In the second part the central figure is Wilhelm Killing, who developed structure and classification of semisimple Lie algebras. The third part focuses on the developments of the representation of Lie algebras, in particular the work of Elie Cartan. The book concludes with the work of Hermann Weyl and his contemporaries on the structure and representation of Lie groups which serves to bring together much of the earlier work into a coherent theory while at the same time opening up significant avenues for further work.


Basic Lie Theory

Basic Lie Theory

Author: Hossein Abbaspour

Publisher: World Scientific

Published: 2007

Total Pages: 444

ISBN-13: 9812706984

DOWNLOAD EBOOK

This volume provides a comprehensive treatment of basic Lie theory, primarily directed toward graduate study. The text is ideal for a full graduate course in Lie groups and Lie algebras. However, the book is also very usable for a variety of other courses: a one-semester course in Lie algebras, or on Haar measure and its applications, for advanced undergraduates; or as the text for one-semester graduate courses in Lie groups and symmetric spaces of non-compact type, or in lattices in Lie groups. The material is complete and detailed enough to be used for self-study; it can also serve as a reference work for professional mathematicians working in other areas. The book's utility for such a varied readership is enhanced by a diagram showing the interdependence of the separate chapters so that individual chapters and the material they depend upon can be selected, while others can be skipped.The book incorporates many of the most significant discoveries and pioneering contributions of the masters of the subject: Borel, Cartan, Chevalley, Iwasawa, Mostow, Siegel, and Weyl, among others.


Theory of Lie Groups (PMS-8), Volume 8

Theory of Lie Groups (PMS-8), Volume 8

Author: Claude Chevalley

Publisher: Princeton University Press

Published: 2016-06-02

Total Pages: 230

ISBN-13: 1400883857

DOWNLOAD EBOOK

This famous book was the first treatise on Lie groups in which a modern point of view was adopted systematically, namely, that a continuous group can be regarded as a global object. To develop this idea to its fullest extent, Chevalley incorporated a broad range of topics, such as the covering spaces of topological spaces, analytic manifolds, integration of complete systems of differential equations on a manifold, and the calculus of exterior differential forms. The book opens with a short description of the classical groups: unitary groups, orthogonal groups, symplectic groups, etc. These special groups are then used to illustrate the general properties of Lie groups, which are considered later. The general notion of a Lie group is defined and correlated with the algebraic notion of a Lie algebra; the subgroups, factor groups, and homomorphisms of Lie groups are studied by making use of the Lie algebra. The last chapter is concerned with the theory of compact groups, culminating in Peter-Weyl's theorem on the existence of representations. Given a compact group, it is shown how one can construct algebraically the corresponding Lie group with complex parameters which appears in the form of a certain algebraic variety (associated algebraic group). This construction is intimately related to the proof of the generalization given by Tannaka of Pontrjagin's duality theorem for Abelian groups. The continued importance of Lie groups in mathematics and theoretical physics make this an indispensable volume for researchers in both fields.


Lie Theory and Geometry

Lie Theory and Geometry

Author: Jean-Luc Brylinski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 629

ISBN-13: 1461202612

DOWNLOAD EBOOK

This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant’s fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant’s work.