Green chemistry involves designing novel ways to create and synthesize products and implement processes that will eliminate or greatly reduce negative environmental impacts. Providing educational laboratory materials that challenge students with the customary topics found in a general chemistry laboratory manual, this lab manual enables students to see how green chemistry principles can be applied to real-world issues. Following a consistent format, each lab experiment includes objectives, prelab questions, and detailed step-by-step procedures for performing the experiments. Additional questions encourage further research about how green chemistry principles compare with traditional, more hazardous experimental methods.
The user This manual is designed for the use of geo-scientists with an interest and need in developing palaeobiological materials as a potential source of data. To meet this objective practical procedures have been formatted for use by both professional and semi professional students with an initial understanding of palaeo biological research aims as a primary source of scientific data. I have attempted to provide an explanation and understanding of practical procedures which may be required by students undertaking palaeobiological projects as part of a degree course. The layout of this manual should be particularly beneficial in the instruction and training of geotechnologists and museum preparators. Graduate students and scientists requiring an outline of a preparation procedure will also be able to use the manual as a reference from which to assess the suitability of a procedure. This manual is also intended for use by the "committed amateur". Many of the techniques described in this manual have been devised by non-palaeontologists, and developed from methods used in archaeology, zoology and botany, as well as other areas of geology. A considerable number of the methods can be undertaken by the amateur, and in the case of many of the field procedures, should be used. This will ensure that specimens and samples can be conserved in such a manner as to facilitate any later research, and not invalidate the results of subsequent geochemical analytical techniques which might be employed.
This is the third edition of this manual which contains updated practical guidance on biosafety techniques in laboratories at all levels. It is organised into nine sections and issues covered include: microbiological risk assessment; lab design and facilities; biosecurity concepts; safety equipment; contingency planning; disinfection and sterilisation; the transport of infectious substances; biosafety and the safe use of recombinant DNA technology; chemical, fire and electrical safety aspects; safety organisation and training programmes; and the safety checklist.
Going green is a hot topic in both chemistry and chemical engineering. Green chemistry is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Green engineering is the development and commercialization of economically feasible industrial processes that reduce the risk to human health and the environment. This book summarizes a workshop convened by the National Research Council to explore the widespread implementation of green chemistry and chemical engineering concepts into undergraduate and graduate education and how to integrate these concepts into the established and developing curricula. Speakers highlighted the most effective educational practices to date and discussed the most promising educational materials and software tools in green chemistry and engineering. The goal of the workshop was to inform the Chemical Sciences Roundtable, which provides a science-oriented, apolitical forum for leaders in the chemical sciences to discuss chemically related issues affecting government, industry, and universities.
Exploring Physical Anthropology is a comprehensive, full-color lab manual intended for an introductory laboratory course in physical anthropology. It can also serve as a supplementary workbook for a lecture class, particularly in the absence of a laboratory offering. This laboratory manual enables a hands-on approach to learning about the evolutionary processes that resulted in humans through the use of numerous examples and exercises. It offers a solid grounding in the main areas of an introductory physical anthropology lab course: genetics, evolutionary forces, human osteology, forensic anthropology, comparative/functional skeletal anatomy, primate behavior, paleoanthropology, and modern human biological variation.
Molecular Biology Techniques: A Classroom Laboratory Manual, Fourth Edition is a must-have collection of methods and procedures on how to create a single, continuous, comprehensive project that teaches students basic molecular techniques. It is an indispensable tool for introducing advanced undergraduates and beginning graduate students to the techniques of recombinant DNA technology—or gene cloning and expression. The techniques used in basic research and biotechnology laboratories are covered in detail. Students will gain hands-on experience on subcloning a gene into an expression vector straight through to the purification of the recombinant protein. - Presents student-tested labs proven successful in real classroom laboratories - Includes a test bank on a companion website for additional testing and practice - Provides exercises that simulate a cloning project that would be performed in a real research lab - Includes a prep-list appendix that contains necessary recipes and catalog numbers, providing staff with detailed instructions
A respected resource for decades, the Guide for the Care and Use of Laboratory Animals has been updated by a committee of experts, taking into consideration input from the scientific and laboratory animal communities and the public at large. The Guide incorporates new scientific information on common laboratory animals, including aquatic species, and includes extensive references. It is organized around major components of animal use: Key concepts of animal care and use. The Guide sets the framework for the humane care and use of laboratory animals. Animal care and use program. The Guide discusses the concept of a broad Program of Animal Care and Use, including roles and responsibilities of the Institutional Official, Attending Veterinarian and the Institutional Animal Care and Use Committee. Animal environment, husbandry, and management. A chapter on this topic is now divided into sections on terrestrial and aquatic animals and provides recommendations for housing and environment, husbandry, behavioral and population management, and more. Veterinary care. The Guide discusses veterinary care and the responsibilities of the Attending Veterinarian. It includes recommendations on animal procurement and transportation, preventive medicine (including animal biosecurity), and clinical care and management. The Guide addresses distress and pain recognition and relief, and issues surrounding euthanasia. Physical plant. The Guide identifies design issues, providing construction guidelines for functional areas; considerations such as drainage, vibration and noise control, and environmental monitoring; and specialized facilities for animal housing and research needs. The Guide for the Care and Use of Laboratory Animals provides a framework for the judgments required in the management of animal facilities. This updated and expanded resource of proven value will be important to scientists and researchers, veterinarians, animal care personnel, facilities managers, institutional administrators, policy makers involved in research issues, and animal welfare advocates.
With age-appropriate, inquiry-centered curriculum materials and sound teaching practices, middle school science can capture the interest and energy of adolescent students and expand their understanding of the world around them. Resources for Teaching Middle School Science, developed by the National Science Resources Center (NSRC), is a valuable tool for identifying and selecting effective science curriculum materials that will engage students in grades 6 through 8. The volume describes more than 400 curriculum titles that are aligned with the National Science Education Standards. This completely new guide follows on the success of Resources for Teaching Elementary School Science, the first in the NSRC series of annotated guides to hands-on, inquiry-centered curriculum materials and other resources for science teachers. The curriculum materials in the new guide are grouped in five chapters by scientific areaâ€"Physical Science, Life Science, Environmental Science, Earth and Space Science, and Multidisciplinary and Applied Science. They are also grouped by typeâ€"core materials, supplementary units, and science activity books. Each annotation of curriculum material includes a recommended grade level, a description of the activities involved and of what students can be expected to learn, a list of accompanying materials, a reading level, and ordering information. The curriculum materials included in this book were selected by panels of teachers and scientists using evaluation criteria developed for the guide. The criteria reflect and incorporate goals and principles of the National Science Education Standards. The annotations designate the specific content standards on which these curriculum pieces focus. In addition to the curriculum chapters, the guide contains six chapters of diverse resources that are directly relevant to middle school science. Among these is a chapter on educational software and multimedia programs, chapters on books about science and teaching, directories and guides to science trade books, and periodicals for teachers and students. Another section features institutional resources. One chapter lists about 600 science centers, museums, and zoos where teachers can take middle school students for interactive science experiences. Another chapter describes nearly 140 professional associations and U.S. government agencies that offer resources and assistance. Authoritative, extensive, and thoroughly indexedâ€"and the only guide of its kindâ€"Resources for Teaching Middle School Science will be the most used book on the shelf for science teachers, school administrators, teacher trainers, science curriculum specialists, advocates of hands-on science teaching, and concerned parents.