Lectures on Vanishing Theorems

Lectures on Vanishing Theorems

Author: Esnault

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 173

ISBN-13: 3034886004

DOWNLOAD EBOOK

Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p > 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p > 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p > 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).


Introduction to Hodge Theory

Introduction to Hodge Theory

Author: José Bertin

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 254

ISBN-13: 9780821820407

DOWNLOAD EBOOK

Hodge theory originated as an application of harmonic theory to the study of the geometry of compact complex manifolds. The ideas have proved to be quite powerful, leading to fundamentally important results throughout algebraic geometry. This book consists of expositions of various aspects of modern Hodge theory. Its purpose is to provide the nonexpert reader with a precise idea of the current status of the subject. The three chapters develop distinct but closely related subjects:$L2$ Hodge theory and vanishing theorems; Frobenius and Hodge degeneration; variations of Hodge structures and mirror symmetry. The techniques employed cover a wide range of methods borrowed from the heart of mathematics: elliptic PDE theory, complex differential geometry, algebraic geometry incharacteristic $p$, cohomological and sheaf-theoretic methods, deformation theory of complex varieties, Calabi-Yau manifolds, singularity theory, etc. A special effort has been made to approach the various themes from their most na The reader should have some familiarity with differential and algebraic geometry, with other prerequisites varying by chapter. The book is suitable as an accompaniment to a second course in algebraic geometry.


Snowbird Lectures in Algebraic Geometry

Snowbird Lectures in Algebraic Geometry

Author: Ravi Vakil

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 202

ISBN-13: 0821837192

DOWNLOAD EBOOK

A significant part of the 2004 Summer Research Conference on Algebraic Geometry (Snowbird, UT) was devoted to lectures introducing the participants, in particular, graduate students and recent Ph.D.'s, to a wide swathe of algebraic geometry and giving them a working familiarity with exciting, rapidly developing parts of the field. One of the main goals of the organizers was to allow the participants to broaden their horizons beyond the narrow area in which they are working. A fine selection of topics and a noteworthy list of contributors made the resulting collection of articles a useful resource for everyone interested in getting acquainted with the modern topic of algebraic geometry. The book consists of ten articles covering, among others, the following topics: the minimal model program, derived categories of sheaves on algebraic varieties, Kobayashi hyperbolicity, groupoids and quotients in algebraic geometry, rigid analytic varieties, and equivariant cohomology. Suitable for independent study, this unique volume is intended for graduate students and researchers interested in algebraic geometry.


Higher Dimensional Complex Varieties

Higher Dimensional Complex Varieties

Author: Marco Andreatta

Publisher: Walter de Gruyter

Published: 1996

Total Pages: 400

ISBN-13: 9783110145038

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


Sheaves in Topology

Sheaves in Topology

Author: Alexandru Dimca

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 253

ISBN-13: 3642188680

DOWNLOAD EBOOK

Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.


Progress in Commutative Algebra 2

Progress in Commutative Algebra 2

Author: Christopher Francisco

Publisher: Walter de Gruyter

Published: 2012-04-26

Total Pages: 329

ISBN-13: 311027860X

DOWNLOAD EBOOK

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure. Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely generated. The final three papers in this volume investigate factorization in a broad sense. The first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime ideals of the projective line over the integers. The editors have also included a paper on zero divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final paper, by Chapman and Krause, concerns non-unique factorization.


Complex Algebraic Geometry

Complex Algebraic Geometry

Author: János Kollár

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 354

ISBN-13: 0821811452

DOWNLOAD EBOOK

Lecture notes from the Third Summer Session of the Regional Geometry Institute, held in Park City, Utah, in 1993.


Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Author: Boyan Sirakov

Publisher: World Scientific

Published: 2019-02-27

Total Pages: 5393

ISBN-13: 9813272899

DOWNLOAD EBOOK

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.


Geometry of Higher Dimensional Algebraic Varieties

Geometry of Higher Dimensional Algebraic Varieties

Author: Thomas Peternell

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 221

ISBN-13: 3034888937

DOWNLOAD EBOOK

This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.