Lectures on the Theory of the Nucleus

Lectures on the Theory of the Nucleus

Author: A. G. Sitenko

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 317

ISBN-13: 1483295419

DOWNLOAD EBOOK

Provides an advanced and up-to-date account of the theory of nuclear structure and discusses in considerable detail both the superfluid and collective models of the nucleus, in addition to earlier complementary models and theories. The book also examines other important topics such as the rotational and vibrational spectra of nuclei which have not previously been treated in such depth. To summarize, it covers a large amount of theoretical ground in one volume and attempts to fill a serious gap in the literature. Many problems are included


From Nucleons to Nucleus

From Nucleons to Nucleus

Author: Jouni Suhonen

Publisher: Springer Science & Business Media

Published: 2007-04-22

Total Pages: 655

ISBN-13: 3540488618

DOWNLOAD EBOOK

From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.


Nuclear Physics

Nuclear Physics

Author: Enrico Fermi

Publisher: University of Chicago Press

Published: 1950

Total Pages: 266

ISBN-13: 9780226243658

DOWNLOAD EBOOK

This volume presents, with some amplification, the notes on the lectures on nuclear physics given by Enrico Fermi at the University of Chicago in 1949. "The compilers of this publication may be warmly congratulated. . . . The scope of this course is amazing: within 240 pages it ranges from the general properties of atomic nuclei and nuclear forces to mesons and cosmic rays, and includes an account of fission and elementary pile theory. . . . The course addresses itself to experimenters rather than to specialists in nuclear theory, although the latter will also greatly profit from its study on account of the sound emphasis laid everywhere on the experimental approach to problems. . . . There is a copious supply of problems."—Proceedings of the Physical Society "Only a relatively few students are privileged to attend Professor Fermi's brilliant lectures at the University of Chicago; it is therefore a distinct contribution to the followers of nuclear science that his lecture material has been systematically organized in a publication and made available to a much wider audience."—Nucelonics


Lectures on the Theory of Few-Body Systems

Lectures on the Theory of Few-Body Systems

Author: Vladimir B. Belyaev

Publisher: Springer

Published: 1990-07-20

Total Pages: 156

ISBN-13:

DOWNLOAD EBOOK

Nuclear physics is undoubtedly a many-body problem. A nice introduction into the present status of this subject may be found in the comprehensive mono graph by P. Ring and P. Schuck "The Nuclear Many-Body Problem" (Springer, Berlin, Heidelberg, New York 1980). However, in view of the many challenging problems that remain to be tackled, it is sensible to consider systems with few particles as model cases. These provide the basis for solving the sophisticated many-body problem posed by intermediate and heavy nuclei. Out of the large number of existing nuclear systems, few-particle, that is few-nucleon, systems can be singled out to form a special group. This is possi ble because a comparatively small number of degrees of freedom (or dynamic variables) is required for a complete description of such systems. In these Lectures we utilize this to study few-body systems in great detail, in particular three-and four-body systems. In contrast to published monographs on the subject, we deal not just with nucleonic degrees of freedom but consider also non-nucleonic degrees of freedom. The range of approaches and methods examined exceeds the scope of other textbooks. The Lectures are organized in such a way as to guide the uninitiated reader through the essentials of solving the dynamical equations of few-body systems directly towards practical applications. Formally oriented readers might like to supplement their reading with texts such as "The Quantum Mechanical Few Body Problem" by W. GlOckle (Springer, Berlin, Heidelberg, New York 1983).