Lectures on the Theory of Integration

Lectures on the Theory of Integration

Author: Ralph Henstock

Publisher: World Scientific

Published: 1988

Total Pages: 224

ISBN-13: 9789971504519

DOWNLOAD EBOOK

This book is intended to be self-contained, giving the theory of absolute (equivalent to Lebesgue) and non-absolute (equivalent to Denjoy-Perron) integration by using a simple extension of the Riemann integral. A useful tool for mathematicians and scientists needing advanced integration theory would be a method combining the ideas of the calculus of indefinite integral and Riemann definite integral in such a way that Lebesgue properties can be proved easily.Three important results that have not appeared in any other book distinguish this book from the rest. First a result on limits of sequences under the integral sign, secondly the necessary and sufficient conditions for the various limits under the integral sign and thirdly the application of these results to ordinary differential equations. The present book will give non-absolute integration theory just as easily as the absolute theory, and Stieltjes-type integration too.


Lectures on Measure and Integration

Lectures on Measure and Integration

Author: Harold Widom

Publisher: Courier Dover Publications

Published: 2016-11-16

Total Pages: 177

ISBN-13: 0486810283

DOWNLOAD EBOOK

These well-known and concise lecture notes present the fundamentals of the Lebesgue theory of integration and an introduction to some of the theory's applications. Suitable for advanced undergraduates and graduate students of mathematics, the treatment also covers topics of interest to practicing analysts. Author Harold Widom emphasizes the construction and properties of measures in general and Lebesgue measure in particular as well as the definition of the integral and its main properties. The notes contain chapters on the Lebesgue spaces and their duals, differentiation of measures in Euclidean space, and the application of integration theory to Fourier series.


Lectures on Complex Integration

Lectures on Complex Integration

Author: A. O. Gogolin

Publisher: Springer Science & Business Media

Published: 2013-10-22

Total Pages: 291

ISBN-13: 3319002120

DOWNLOAD EBOOK

The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.


Lectures on Functional Analysis and the Lebesgue Integral

Lectures on Functional Analysis and the Lebesgue Integral

Author: Vilmos Komornik

Publisher: Springer

Published: 2016-06-03

Total Pages: 417

ISBN-13: 1447168119

DOWNLOAD EBOOK

This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small lp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.


The General Theory of Integration

The General Theory of Integration

Author: Ralph Henstock

Publisher:

Published: 1991

Total Pages: 288

ISBN-13:

DOWNLOAD EBOOK

Every good mathematical book stands like a tree with its roots in the past and its branches stretching out towards the future. Whether the fruits of this tree are desirable and whether the branches will be quarried for mathematical wood to build further edifices, I will leave to the judgment of history. The roots of this book take nourishment from the concept of definite integration of continuous functions, where Riemann's method is the high water mark of the simpler theory.


Lanzhou Lectures on Henstock Integration

Lanzhou Lectures on Henstock Integration

Author: Peng Yee Lee

Publisher: World Scientific

Published: 1989

Total Pages: 194

ISBN-13: 9789971508920

DOWNLOAD EBOOK

This is an introductory book on Henstock integration, otherwise known as generalized Riemann integral. It is self-contained and introductory. The author has included a series of convergence theorems for the integral, previously not available. In this book, he has also developed a technique of proof required to present the new as well as the classical results.


Measure Theory and Integration

Measure Theory and Integration

Author: Michael Eugene Taylor

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 338

ISBN-13: 0821841807

DOWNLOAD EBOOK

This self-contained treatment of measure and integration begins with a brief review of the Riemann integral and proceeds to a construction of Lebesgue measure on the real line. From there the reader is led to the general notion of measure, to the construction of the Lebesgue integral on a measure space, and to the major limit theorems, such as the Monotone and Dominated Convergence Theorems. The treatment proceeds to $Lp$ spaces, normed linear spaces that are shown to be complete (i.e., Banach spaces) due to the limit theorems. Particular attention is paid to $L2$ spaces as Hilbert spaces, with a useful geometrical structure. Having gotten quickly to the heart of the matter, the text proceeds to broaden its scope. There are further constructions of measures, including Lebesgue measure on $n$-dimensional Euclidean space. There are also discussions of surface measure, and more generally of Riemannian manifolds and the measures they inherit, and an appendix on the integration ofdifferential forms. Further geometric aspects are explored in a chapter on Hausdorff measure. The text also treats probabilistic concepts, in chapters on ergodic theory, probability spaces and random variables, Wiener measure and Brownian motion, and martingales. This text will prepare graduate students for more advanced studies in functional analysis, harmonic analysis, stochastic analysis, and geometric measure theory.


Measure, Integration & Real Analysis

Measure, Integration & Real Analysis

Author: Sheldon Axler

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 430

ISBN-13: 3030331431

DOWNLOAD EBOOK

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/


Lectures on the Philosophy of Mathematics

Lectures on the Philosophy of Mathematics

Author: Joel David Hamkins

Publisher: MIT Press

Published: 2021-03-09

Total Pages: 350

ISBN-13: 0262542234

DOWNLOAD EBOOK

An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.


Lebesgue Integration on Euclidean Space

Lebesgue Integration on Euclidean Space

Author: Frank Jones

Publisher: Jones & Bartlett Learning

Published: 2001

Total Pages: 626

ISBN-13: 9780763717087

DOWNLOAD EBOOK

"'Lebesgue Integration on Euclidean Space' contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. It contains many exercises that are incorporated throughout the text, enabling the reader to apply immediately the new ideas that have been presented" --