Lectures on the Physics of Strongly Correlated Systems XII

Lectures on the Physics of Strongly Correlated Systems XII

Author: Adolfo Avella

Publisher: American Institute of Physics

Published: 2008-06-05

Total Pages: 288

ISBN-13:

DOWNLOAD EBOOK

The volume contains the lectures delivered at the XII Training Course in the Physics of Strongly Correlated Systems, held in Vietri sul Mare (Salerno) Italy, in October 2007. The focus of the meeting was to promote the formation of young scientists by means of training through research. These features are reflected in the book: the lectures are up-to-date monographies of relevant subjects in the field of Condensed Matter Physics. Contributions include: Quantum Magnetism (Independent spins and Weiss meanfield theory; Finite Heisenberg clusters; Linear spin-wave theory; Classical and quantum Monte Carlo; Entanglement in quantum spin systems); Nanomagnets and Entanglement (The Dynamical Mean Field and Cluster Approximations; Quantum Monte Carlo Algorithms for the Quantum Cluster Problem; Analytic Continuation of Quantum Monte Carlo Data); The Dynamical Cluster Approximation with Quantum Monte Carlo Cluster Solvers (Fermi liquids; Fermi-liquid instabilities at quantum phase transitions: theory; Fermi-liquid instabilities at quantum phase transitions: experiment; Metal-insulator transition in heavily doped semiconductors); Quantum phase transitions; Correlated thermoelectric (Phenomenological equations; Physical interpretation; Solution of transport equations; Linear response theory; Current operators; Mahan-Jonson theorem; Microscopic solution for transport coefficients).


Strongly Correlated Systems

Strongly Correlated Systems

Author: Adolfo Avella

Publisher: Springer

Published: 2014-10-01

Total Pages: 329

ISBN-13: 3662441330

DOWNLOAD EBOOK

The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for any other researcher in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.


Lectures on the Physics of Strongly Correlated Systems XVI

Lectures on the Physics of Strongly Correlated Systems XVI

Author: Adolfo Avella

Publisher: Amer Inst of Physics

Published: 2012-10-25

Total Pages: 325

ISBN-13: 9780735410978

DOWNLOAD EBOOK

The volume contains the lectures delivered at the “XVI Training Course in the Physics of Strongly Correlated Systems”, held in Vietri sul Mare (Salerno) Italy, in October 2011. The project of the meeting was to promote the formation of young scientists by means of training through research. These features are reflected in the book: the lectures are up-to-date monographies of relevant subjects in the field of Condensed Matter Physics. Contributions include: Strongly Correlated Electron Physics: From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions; Landau's Fermi Liquid Concept to the Extreme: the Physics of Heavy Fermions; Simulations with matrix product states; The solid state as a fabric for intertwining chemical bonding, electronic structure and magnetism.


Lecture Notes On Field Theory In Condensed Matter Physics

Lecture Notes On Field Theory In Condensed Matter Physics

Author: Christopher Mudry

Publisher: World Scientific Publishing Company

Published: 2014-02-28

Total Pages: 745

ISBN-13: 9814449121

DOWNLOAD EBOOK

The aim of this book is to introduce a graduate student to selected concepts in condensed matter physics for which the language of field theory is ideally suited. The examples considered in this book are those of superfluidity for weakly interacting bosons, collinear magnetism, and superconductivity. Quantum phase transitions are also treated in the context of quantum dissipative junctions and interacting fermions constrained to one-dimensional position space. The style of presentation is sufficiently detailed and comprehensive that it only presumes familiarity with undergraduate physics.


Dynamical Mean-Field Theory for Strongly Correlated Materials

Dynamical Mean-Field Theory for Strongly Correlated Materials

Author: Volodymyr Turkowski

Publisher: Springer Nature

Published: 2021-04-22

Total Pages: 393

ISBN-13: 3030649040

DOWNLOAD EBOOK

​​This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.


Annual Reports in Computational Chemistry

Annual Reports in Computational Chemistry

Author:

Publisher: Elsevier

Published: 2015-11-29

Total Pages: 438

ISBN-13: 044463682X

DOWNLOAD EBOOK

Annual Reports in Computational Chemistry provides timely and critical reviews of important topics in computational chemistry as applied to all chemical disciplines. Topics covered include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists. - Quantum chemistry - Molecular mechanics - Force fields - Chemical education and applications in academic and industrial settings


Lectures on the Physics of Highly Correlated Electron Systems VII

Lectures on the Physics of Highly Correlated Electron Systems VII

Author: Adolpho Avella

Publisher: American Institute of Physics

Published: 2003-08-29

Total Pages: 380

ISBN-13:

DOWNLOAD EBOOK

The objective of the meeting was to promote the formation of young scientists by means of training through research. These features are reflected in the book: the pedagogical lectures are up-to-date monographs of relevant subjects in the field of condensed matter physics. Contributions include: polarons (the polaron concept, optical properties and internal structure of polarons, many-polaron systems, magnetoabsorption of polarons, optical properties of quantum dots: role of the polaron interaction, interacting polarons in a quantum dot, small polarons); multielectron bubbles in liquid helium: a spherical two-dimensional electron system (oscillation modes, bubble stability and fissioning, the spherical two-dimensional electron gas, the Wigner solid of electrons in the bubble); the numerical approach to the correlated electron problem: quantum Monte Carlo methods (the world line approach for the XXZ model and relation to the 6-vertex model, auxiliary field Quantum Monte Carlo algorithms, application of the auxiliary field QMC to specific Hamiltonians, the Hirsch-Fye impurity algorithm); basic models in the quantum theory of magnetism (the Heisenberg model, the Hubbard model, and the sd-model).