Lectures on the Physics of Highly Correlated Electron Systems IX

Lectures on the Physics of Highly Correlated Electron Systems IX

Author: Adolfo Avella

Publisher: American Inst. of Physics

Published: 2005-09-27

Total Pages: 324

ISBN-13: 9780735402799

DOWNLOAD EBOOK

This book contains lectures on strongly correlated electron systems presented by eminent physicists. These lectures are up-to-date summaries of relevant subjects in the field of condensed matter physics. Contributions include: BCS theory of nodal superconductors; strongly correlated particle systems and composite operator methods; diagonalization- and numerical renormalization-group-based methods for interacting quantum systems; as well as phenomenological aspects of unconventional superconductivity.


Lectures on the Physics of Highly Correlated Electron Systems VIII

Lectures on the Physics of Highly Correlated Electron Systems VIII

Author: Adolfo Avella

Publisher: American Institute of Physics

Published: 2004-08-27

Total Pages: 272

ISBN-13:

DOWNLOAD EBOOK

The papers were peer reviewed by a local panel. The objective of the meeting was to promote the progress of young scientists by means of training through research. The lectures are up-to-date monographs of relevant subjects in the field of condensed matter physics. Contributions include the following lectures: Electron-Phonon Interaction and Strong Correlations in High-Temperature Superconductors: One cannot avoid the unavoidable (The properties of the normal state and pairing mechanism in high-Tc superconductors, Forward scattering peak in the EPI, The FSP theory, The ARPES non-shift puzzle, Interesting predictions of the FSP theory); Strongly Correlated Electron Materials: Dynamical Mean-Field Theory and Electronic Structure (The basic principles of dynamical mean-field theory (DMFT), application of DMFT to the Mott transition, compare to recent spectroscopy, transport experiments; the key role of the quasiparticle coherence scale, transfers of spectral weight between low- and intermediate or high energies is emphasized); Monte Carlo Simulations of Quantum Systems with Global Updates (a model for doped antiferromagnets, first application of the hybrid loop algorithm, namely the t-Jmodel with 1/r2 interaction).


Strongly Correlated Systems

Strongly Correlated Systems

Author: Adolfo Avella

Publisher: Springer Science & Business Media

Published: 2013-04-05

Total Pages: 350

ISBN-13: 3642351069

DOWNLOAD EBOOK

This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.


Lectures on the Physics of Highly Correlated Electron Systems VII

Lectures on the Physics of Highly Correlated Electron Systems VII

Author: Adolpho Avella

Publisher: American Institute of Physics

Published: 2003-08-29

Total Pages: 380

ISBN-13:

DOWNLOAD EBOOK

The objective of the meeting was to promote the formation of young scientists by means of training through research. These features are reflected in the book: the pedagogical lectures are up-to-date monographs of relevant subjects in the field of condensed matter physics. Contributions include: polarons (the polaron concept, optical properties and internal structure of polarons, many-polaron systems, magnetoabsorption of polarons, optical properties of quantum dots: role of the polaron interaction, interacting polarons in a quantum dot, small polarons); multielectron bubbles in liquid helium: a spherical two-dimensional electron system (oscillation modes, bubble stability and fissioning, the spherical two-dimensional electron gas, the Wigner solid of electrons in the bubble); the numerical approach to the correlated electron problem: quantum Monte Carlo methods (the world line approach for the XXZ model and relation to the 6-vertex model, auxiliary field Quantum Monte Carlo algorithms, application of the auxiliary field QMC to specific Hamiltonians, the Hirsch-Fye impurity algorithm); basic models in the quantum theory of magnetism (the Heisenberg model, the Hubbard model, and the sd-model).


Modern Theories of Many-Particle Systems in Condensed Matter Physics

Modern Theories of Many-Particle Systems in Condensed Matter Physics

Author: Daniel C. Cabra

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 380

ISBN-13: 3642104495

DOWNLOAD EBOOK

Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations. The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory. As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.


Lectures on the Physics of Highly Correlated Electron Systems IV

Lectures on the Physics of Highly Correlated Electron Systems IV

Author: Ferdinando Mancini

Publisher: American Institute of Physics

Published: 2000-08-04

Total Pages: 398

ISBN-13:

DOWNLOAD EBOOK

This volume contains the lectures delivered at the Fourth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors. In contrast to usual workshops, this course was designed to promote active participation of senior and young researchers and to introduce them to some specific problems. Three of the four lectures held are included in this book.


2d Quantum Metamaterials: Proceedings Of The 2018 Nist Workshop - 2018 Nist Workshop

2d Quantum Metamaterials: Proceedings Of The 2018 Nist Workshop - 2018 Nist Workshop

Author: Wiley P Kirk

Publisher: World Scientific

Published: 2019-09-12

Total Pages: 157

ISBN-13: 9811206074

DOWNLOAD EBOOK

Exciting developments in strategic areas of science and engineering makes for possible new engineered structures identified as quantum metamaterials. These new structures offer unusual properties that involve fundamental concepts such as entangled quantum states, superposition, quantum coherence, analog quantum simulation, etc., opening a new era of technological advancement. This manuscript presents the output of a recent workshop held at the National Institute of Standards and Technology in 2018. It covers the key scientific ideas, various technical approaches under investigation, and the potential technological outcomes in a new field of research.


Many-Electron Approaches in Physics, Chemistry and Mathematics

Many-Electron Approaches in Physics, Chemistry and Mathematics

Author: Volker Bach

Publisher: Springer

Published: 2014-07-01

Total Pages: 410

ISBN-13: 3319063790

DOWNLOAD EBOOK

This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further developments across the disciplines. The rapid advances of modern technology will inevitably require substantial improvements in the approaches currently used, which will in turn make exchanges between disciplines indispensable. In essence this book is one of the very first attempts at an interdisciplinary approach to the many-electron problem.