Lectures on the Arithmetic Riemann-Roch Theorem

Lectures on the Arithmetic Riemann-Roch Theorem

Author: Gerd Faltings

Publisher: Princeton University Press

Published: 1992-03-10

Total Pages: 112

ISBN-13: 0691025444

DOWNLOAD EBOOK

The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.


Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127

Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127

Author: Gerd Faltings

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 118

ISBN-13: 1400882478

DOWNLOAD EBOOK

The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.


Lectures on the Arithmetic Riemann-Roch Theorem

Lectures on the Arithmetic Riemann-Roch Theorem

Author: Gerd Faltings

Publisher:

Published: 1992

Total Pages: 100

ISBN-13: 9780691087719

DOWNLOAD EBOOK

The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.


Lectures on Arakelov Geometry

Lectures on Arakelov Geometry

Author: C. Soulé

Publisher: Cambridge University Press

Published: 1994-09-15

Total Pages: 190

ISBN-13: 9780521477093

DOWNLOAD EBOOK

An account for graduate students of this new technique in diophantine geometry; includes account of higher dimensional theory.


An Arithmetic Riemann-Roch Theorem for Singular Arithmetic Surfaces

An Arithmetic Riemann-Roch Theorem for Singular Arithmetic Surfaces

Author: Wayne Aitken

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 189

ISBN-13: 0821804073

DOWNLOAD EBOOK

The following gives a development of Arakelov theory general enough to handle not only regular arithmetic surfaces but also a large class of arithmetic surfaces whose generic fiber has singularities. This development culminates in an arithmetic Riemann-Roch theorem for such arithmetic surfaces. The first part of the memoir gives a treatment of Deligne's functorial intersection theory, and the second develops a class of intersection functions for singular curves which behaves analogously to the canonical Green's functions introduced by Arakelov for smooth curves.


Arakelov Geometry and Diophantine Applications

Arakelov Geometry and Diophantine Applications

Author: Emmanuel Peyre

Publisher: Springer Nature

Published: 2021-03-10

Total Pages: 469

ISBN-13: 3030575594

DOWNLOAD EBOOK

Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.


Lectures on Algebraic Geometry I

Lectures on Algebraic Geometry I

Author: Günter Harder

Publisher: Springer Science & Business Media

Published: 2008-08-01

Total Pages: 301

ISBN-13: 3834895016

DOWNLOAD EBOOK

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.


Mathematics Unlimited - 2001 and Beyond

Mathematics Unlimited - 2001 and Beyond

Author: Björn Engquist

Publisher: Springer

Published: 2017-04-05

Total Pages: 1219

ISBN-13: 364256478X

DOWNLOAD EBOOK

This is a book guaranteed to delight the reader. It not only depicts the state of mathematics at the end of the century, but is also full of remarkable insights into its future de- velopment as we enter a new millennium. True to its title, the book extends beyond the spectrum of mathematics to in- clude contributions from other related sciences. You will enjoy reading the many stimulating contributions and gain insights into the astounding progress of mathematics and the perspectives for its future. One of the editors, Björn Eng- quist, is a world-renowned researcher in computational sci- ence and engineering. The second editor, Wilfried Schmid, is a distinguished mathematician at Harvard University. Likewi- se the authors are all foremost mathematicians and scien- tists, and their biographies and photographs appear at the end of the book. Unique in both form and content, this is a "must-read" for every mathematician and scientist and, in particular, for graduates still choosing their specialty. Limited collector's edition - an exclusive and timeless work. This special, numbered edition will be available until June 1, 2000. Firm orders only.


Lectures on K3 Surfaces

Lectures on K3 Surfaces

Author: Daniel Huybrechts

Publisher: Cambridge University Press

Published: 2016-09-26

Total Pages: 499

ISBN-13: 1316797252

DOWNLOAD EBOOK

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.


Arithmetic Geometry

Arithmetic Geometry

Author: G. Cornell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 359

ISBN-13: 1461386551

DOWNLOAD EBOOK

This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation.