Lectures on Stochastic Programming

Lectures on Stochastic Programming

Author: Alexander Shapiro

Publisher: SIAM

Published: 2009-01-01

Total Pages: 447

ISBN-13: 0898718759

DOWNLOAD EBOOK

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.


Lectures on Stochastic Programming

Lectures on Stochastic Programming

Author: Alexander Shapiro

Publisher: SIAM

Published: 2014-07-09

Total Pages: 512

ISBN-13: 1611973430

DOWNLOAD EBOOK

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. In Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.


Modeling with Stochastic Programming

Modeling with Stochastic Programming

Author: Alan J. King

Publisher: Springer Science & Business Media

Published: 2012-06-19

Total Pages: 189

ISBN-13: 0387878173

DOWNLOAD EBOOK

While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.


Stochastic Control Theory

Stochastic Control Theory

Author: Makiko Nisio

Publisher: Springer

Published: 2014-11-27

Total Pages: 263

ISBN-13: 4431551239

DOWNLOAD EBOOK

This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.


First-order and Stochastic Optimization Methods for Machine Learning

First-order and Stochastic Optimization Methods for Machine Learning

Author: Guanghui Lan

Publisher: Springer Nature

Published: 2020-05-15

Total Pages: 591

ISBN-13: 3030395685

DOWNLOAD EBOOK

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.


Lectures on Stochastic Programming: Modeling and Theory, Third Edition

Lectures on Stochastic Programming: Modeling and Theory, Third Edition

Author: Alexander Shapiro

Publisher: SIAM

Published: 2021-08-19

Total Pages: 540

ISBN-13: 1611976596

DOWNLOAD EBOOK

An accessible and rigorous presentation of contemporary models and ideas of stochastic programming, this book focuses on optimization problems involving uncertain parameters for which stochastic models are available. Since these problems occur in vast, diverse areas of science and engineering, there is much interest in rigorous ways of formulating, analyzing, and solving them. This substantially revised edition presents a modern theory of stochastic programming, including expanded and detailed coverage of sample complexity, risk measures, and distributionally robust optimization. It adds two new chapters that provide readers with a solid understanding of emerging topics; updates Chapter 6 to now include a detailed discussion of the interchangeability principle for risk measures; and presents new material on formulation and numerical approaches to solving periodical multistage stochastic programs. Lectures on Stochastic Programming: Modeling and Theory, Third Edition is written for researchers and graduate students working on theory and applications of optimization, with the hope that it will encourage them to apply stochastic programming models and undertake further studies of this fascinating and rapidly developing area.


Lectures on Stochastic Programming

Lectures on Stochastic Programming

Author: Alexander Shapiro

Publisher: SIAM

Published: 2009-10-08

Total Pages: 446

ISBN-13: 089871687X

DOWNLOAD EBOOK

A comprehensive treatment of optimization problems involving uncertain parameters for which stochastic models are available.


Lectures on Modern Convex Optimization

Lectures on Modern Convex Optimization

Author: Aharon Ben-Tal

Publisher: SIAM

Published: 2001-01-01

Total Pages: 500

ISBN-13: 0898714915

DOWNLOAD EBOOK

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.


Nonlinear Optimization

Nonlinear Optimization

Author: Andrzej Ruszczynski

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 463

ISBN-13: 1400841054

DOWNLOAD EBOOK

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.


Multistage Stochastic Optimization

Multistage Stochastic Optimization

Author: Georg Ch. Pflug

Publisher: Springer

Published: 2014-11-12

Total Pages: 309

ISBN-13: 3319088432

DOWNLOAD EBOOK

Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.