Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups

Author: Ken Brown

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 339

ISBN-13: 303488205X

DOWNLOAD EBOOK

This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.


Lectures on Quantum Groups

Lectures on Quantum Groups

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 282

ISBN-13: 0821804782

DOWNLOAD EBOOK

The material is very well motivated ... Of the various monographs available on quantum groups, this one ... seems the most suitable for most mathematicians new to the subject ... will also be appreciated by a lot of those with considerably more experience. --Bulletin of the London Mathematical Society Since its origin, the theory of quantum groups has become one of the most fascinating topics of modern mathematics, with numerous applications to several sometimes rather disparate areas, including low-dimensional topology and mathematical physics. This book is one of the first expositions that is specifically directed to students who have no previous knowledge of the subject. The only prerequisite, in addition to standard linear algebra, is some acquaintance with the classical theory of complex semisimple Lie algebras. Starting with the quantum analog of $\mathfrak{sl}_2$, the author carefully leads the reader through all the details necessary for full understanding of the subject, particularly emphasizing similarities and differences with the classical theory. The final chapters of the book describe the Kashiwara-Lusztig theory of so-called crystal (or canonical) bases in representations of complex semisimple Lie algebras. The choice of the topics and the style of exposition make Jantzen's book an excellent textbook for a one-semester course on quantum groups.


Introduction to Quantum Groups

Introduction to Quantum Groups

Author: George Lusztig

Publisher: Springer Science & Business Media

Published: 2010-10-27

Total Pages: 361

ISBN-13: 0817647171

DOWNLOAD EBOOK

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.


Lectures on Quantum Mechanics for Mathematics Students

Lectures on Quantum Mechanics for Mathematics Students

Author: L. D. Faddeev

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 250

ISBN-13: 082184699X

DOWNLOAD EBOOK

Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.


Quantum Groups and Noncommutative Geometry

Quantum Groups and Noncommutative Geometry

Author: Yuri I. Manin

Publisher: Springer

Published: 2018-10-11

Total Pages: 122

ISBN-13: 3319979876

DOWNLOAD EBOOK

This textbook presents the second edition of Manin's celebrated 1988 Montreal lectures, which influenced a new generation of researchers in algebra to take up the study of Hopf algebras and quantum groups. In this expanded write-up of those lectures, Manin systematically develops an approach to quantum groups as symmetry objects in noncommutative geometry in contrast to the more deformation-oriented approach due to Faddeev, Drinfeld, and others. This new edition contains an extra chapter by Theo Raedschelders and Michel Van den Bergh, surveying recent work that focuses on the representation theory of a number of bi- and Hopf algebras that were first introduced in Manin's lectures, and have since gained a lot of attention. Emphasis is placed on the Tannaka–Krein formalism, which further strengthens Manin's approach to symmetry and moduli-objects in noncommutative geometry.


Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach

Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach

Author: L.A. Lambe

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 314

ISBN-13: 1461541093

DOWNLOAD EBOOK

Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.


Algebras of Functions on Quantum Groups: Part I

Algebras of Functions on Quantum Groups: Part I

Author: Leonid I. Korogodski

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 162

ISBN-13: 0821803360

DOWNLOAD EBOOK

The text is devoted to the study of algebras of functions on quantum groups. The book includes the theory of Poisson-Lie algebras (quasi-classical version of algebras of functions on quantum groups), a description of representations of algebras of functions and the theory of quantum Weyl groups. It can serve as a text for an introduction to the theory of quantum groups and is intended for graduate students and research mathematicians working in algebra, representation theory and mathematical physics.


Five Lectures on Supersymmetry

Five Lectures on Supersymmetry

Author: Daniel S. Freed

Publisher: American Mathematical Soc.

Published:

Total Pages: 132

ISBN-13: 9780821871935

DOWNLOAD EBOOK

The lectures featured in this book treat fundamental concepts necessary for understanding the physics behind these mathematical applications. Freed approaches the topic with the assumption that the basic notions of supersymmetric field theory are unfamiliar to most mathematicians. He presents the material intending to impart a firm grounding in the elementary ideas.