Lectures on Functional Analysis and the Lebesgue Integral

Lectures on Functional Analysis and the Lebesgue Integral

Author: Vilmos Komornik

Publisher: Springer

Published: 2016-06-03

Total Pages: 417

ISBN-13: 1447168119

DOWNLOAD EBOOK

This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small lp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.


Lectures on Functional Analysis and Applications

Lectures on Functional Analysis and Applications

Author: Vladimir Semenovich Pugachev

Publisher: World Scientific

Published: 1999

Total Pages: 756

ISBN-13: 9789810237233

DOWNLOAD EBOOK

This book is intended for those having only a moderate background in mathematics, who need to increase their mathematical knowledge for development in their areas of work and to read the related mathematical literature. The material covered, which includes practically all the information on functional analysis that may be necessary for those working in various areas of applications of mathematics, as well as the simplicity of presentation, differentiates this book from others. About 300 examples and more than 500 problems are provided to help readers understand and master the theories presented. The list of references enables readers to explore those topics in which they are interested, and gather further information about applications used as examples in the book.Applications: Probability Theory and Statistics, Signal and Image Processing, Systems Analysis and Design.


An Introduction to Lebesgue Integration and Fourier Series

An Introduction to Lebesgue Integration and Fourier Series

Author: Howard J. Wilcox

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 194

ISBN-13: 0486137473

DOWNLOAD EBOOK

This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.


Lectures on Functional Analysis and Applications

Lectures on Functional Analysis and Applications

Author: V S Pugachev

Publisher: World Scientific Publishing Company

Published: 1999-07-26

Total Pages: 752

ISBN-13: 9813102926

DOWNLOAD EBOOK

This book is intended for those having only a moderate background in mathematics, who need to increase their mathematical knowledge for development in their areas of work and to read the related mathematical literature. The material covered, which includes practically all the information on functional analysis that may be necessary for those working in various areas of applications of mathematics, as well as the simplicity of presentation, differentiates this book from others. About 300 examples and more than 500 problems are provided to help readers understand and master the theories presented. The list of references enables readers to explore those topics in which they are interested, and gather further information about applications used as examples in the book. Applications: Probability Theory and Statistics, Signal and Image Processing, Systems Analysis and Design.


Functional Analysis

Functional Analysis

Author: Frigyes Riesz

Publisher: Courier Corporation

Published: 2012-12-27

Total Pages: 530

ISBN-13: 0486162141

DOWNLOAD EBOOK

DIVClassic exposition of modern theories of differentiation and integration and principal problems and methods of handling integral equations and linear functionals and transformations. 1955 edition. /div


Real and Functional Analysis

Real and Functional Analysis

Author: Vladimir I. Bogachev

Publisher: Springer Nature

Published: 2020-02-25

Total Pages: 602

ISBN-13: 3030382192

DOWNLOAD EBOOK

This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.


Lectures and Exercises on Functional Analysis

Lectures and Exercises on Functional Analysis

Author: Александр Яковлевич Хелемский

Publisher: American Mathematical Soc.

Published:

Total Pages: 496

ISBN-13: 9780821889695

DOWNLOAD EBOOK

The book is based on courses taught by the author at Moscow State University. Compared to many other books on the subject, it is unique in that the exposition is based on extensive use of the language and elementary constructions of category theory. Among topics featured in the book are the theory of Banach and Hilbert tensor products, the theory of distributions and weak topologies, and Borel operator calculus. The book contains many examples illustrating the general theory presented, as well as multiple exercises that help the reader to learn the subject. It can be used as a textbook on selected topics of functional analysis and operator theory. Prerequisites include linear algebra, elements of real analysis, and elements of the theory of metric spaces.


Measure, Integration & Real Analysis

Measure, Integration & Real Analysis

Author: Sheldon Axler

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 430

ISBN-13: 3030331431

DOWNLOAD EBOOK

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/


The Lebesgue Integral

The Lebesgue Integral

Author: J. C. Burkill

Publisher: Cambridge University Press

Published: 2004-06-03

Total Pages: 112

ISBN-13: 9780521604802

DOWNLOAD EBOOK

Dr Burkill gives a straightforward introduction to Lebesgue's theory of integration. His approach is the classical one, making use of the concept of measure, and deriving the principal results required for applications of the theory.


The Lebesgue Integral for Undergraduates

The Lebesgue Integral for Undergraduates

Author: William Johnston

Publisher: The Mathematical Association of America

Published: 2015-09-25

Total Pages: 297

ISBN-13: 1939512077

DOWNLOAD EBOOK

In 1902, modern function theory began when Henri Lebesgue described a new "integral calculus." His "Lebesgue integral" handles more functions than the traditional integral-so many more that mathematicians can study collections (spaces) of functions. For example, it defines a distance between any two functions in a space. This book describes these ideas in an elementary accessible way. Anyone who has mastered calculus concepts of limits, derivatives, and series can enjoy the material. Unlike any other text, this book brings analysis research topics within reach of readers even just beginning to think about functions from a theoretical point of view.