Lectures on Analytic Differential Equations

Lectures on Analytic Differential Equations

Author: I︠U︡. S. Ilʹi︠a︡shenko

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 641

ISBN-13: 0821836676

DOWNLOAD EBOOK

The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.


Lectures on p-adic Differential Equations

Lectures on p-adic Differential Equations

Author: Bernard Dwork

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 318

ISBN-13: 1461381932

DOWNLOAD EBOOK

The present work treats p-adic properties of solutions of the hypergeometric differential equation d2 d ~ ( x(l - x) dx + (c(l - x) + (c - 1 - a - b)x) dx - ab)y = 0, 2 with a, b, c in 4) n Zp, by constructing the associated Frobenius structure. For this construction we draw upon the methods of Alan Adolphson [1] in his 1976 work on Hecke polynomials. We are also indebted to him for the account (appearing as an appendix) of the relation between this differential equation and certain L-functions. We are indebted to G. Washnitzer for the method used in the construction of our dual theory (Chapter 2). These notes represent an expanded form of lectures given at the U. L. P. in Strasbourg during the fall term of 1980. We take this opportunity to thank Professor R. Girard and IRMA for their hospitality. Our subject-p-adic analysis-was founded by Marc Krasner. We take pleasure in dedicating this work to him. Contents 1 Introduction . . . . . . . . . . 1. The Space L (Algebraic Theory) 8 2. Dual Theory (Algebraic) 14 3. Transcendental Theory . . . . 33 4. Analytic Dual Theory. . . . . 48 5. Basic Properties of", Operator. 73 6. Calculation Modulo p of the Matrix of ~ f,h 92 7. Hasse Invariants . . . . . . 108 8. The a --+ a' Map . . . . . . . . . . . . 110 9. Normalized Solution Matrix. . . . . .. 113 10. Nilpotent Second-Order Linear Differential Equations with Fuchsian Singularities. . . . . . . . . . . . . 137 11. Second-Order Linear Differential Equations Modulo Powers ofp ..... .


Lectures on Partial Differential Equations

Lectures on Partial Differential Equations

Author: Vladimir I. Arnold

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 168

ISBN-13: 3662054418

DOWNLOAD EBOOK

Choice Outstanding Title! (January 2006) This richly illustrated text covers the Cauchy and Neumann problems for the classical linear equations of mathematical physics. A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging! What makes the book unique is Arnold's particular talent at holding a topic up for examination from a new and fresh perspective. He likes to blow away the fog of generality that obscures so much mathematical writing and reveal the essentially simple intuitive ideas underlying the subject. No other mathematical writer does this quite so well as Arnold.


The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations

Author: Kai Diethelm

Publisher: Springer

Published: 2010-08-18

Total Pages: 251

ISBN-13: 3642145744

DOWNLOAD EBOOK

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.


Lectures on Partial Differential Equations

Lectures on Partial Differential Equations

Author: I. G. Petrovsky

Publisher: Courier Corporation

Published: 2012-12-13

Total Pages: 261

ISBN-13: 0486155080

DOWNLOAD EBOOK

Graduate-level exposition by noted Russian mathematician offers rigorous, readable coverage of classification of equations, hyperbolic equations, elliptic equations, and parabolic equations. Translated from the Russian by A. Shenitzer.


Lectures on Riemann Surfaces

Lectures on Riemann Surfaces

Author: Otto Forster

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 262

ISBN-13: 1461259614

DOWNLOAD EBOOK

This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS


Practical Course In Differential Equations And Mathematical Modelling, A: Classical And New Methods. Nonlinear Mathematical Models. Symmetry And Invariance Principles

Practical Course In Differential Equations And Mathematical Modelling, A: Classical And New Methods. Nonlinear Mathematical Models. Symmetry And Invariance Principles

Author: Nail H Ibragimov

Publisher: World Scientific Publishing Company

Published: 2009-11-19

Total Pages: 365

ISBN-13: 9813107766

DOWNLOAD EBOOK

A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book — which aims to present new mathematical curricula based on symmetry and invariance principles — is tailored to develop analytic skills and “working knowledge” in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author's extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collège de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.


Qualitative Theory of Planar Differential Systems

Qualitative Theory of Planar Differential Systems

Author: Freddy Dumortier

Publisher: Springer Science & Business Media

Published: 2006-10-13

Total Pages: 309

ISBN-13: 3540329021

DOWNLOAD EBOOK

This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.


Ordinary Differential Equations in the Complex Domain

Ordinary Differential Equations in the Complex Domain

Author: Einar Hille

Publisher: Courier Corporation

Published: 1997-01-01

Total Pages: 514

ISBN-13: 9780486696201

DOWNLOAD EBOOK

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.