Lectures on Analysis on Metric Spaces

Lectures on Analysis on Metric Spaces

Author: Juha Heinonen

Publisher: Springer Science & Business Media

Published: 2001

Total Pages: 158

ISBN-13: 9780387951041

DOWNLOAD EBOOK

The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.


Topics on Analysis in Metric Spaces

Topics on Analysis in Metric Spaces

Author: Luigi Ambrosio

Publisher: Oxford University Press, USA

Published: 2004

Total Pages: 148

ISBN-13: 9780198529385

DOWNLOAD EBOOK

This book presents the main mathematical prerequisites for analysis in metric spaces. It covers abstract measure theory, Hausdorff measures, Lipschitz functions, covering theorums, lower semicontinuity of the one-dimensional Hausdorff measure, Sobolev spaces of maps between metric spaces, and Gromov-Hausdorff theory, all developed ina general metric setting. The existence of geodesics (and more generally of minimal Steiner connections) is discussed on general metric spaces and as an application of the Gromov-Hausdorff theory, even in some cases when the ambient space is not locally compact. A brief and very general description of the theory of integration with respect to non-decreasing set functions is presented following the Di Giorgi method of using the 'cavalieri' formula as the definition of the integral. Based on lecture notes from Scuola Normale, this book presents the main mathematical prerequisites for analysis in metric spaces. Supplemented with exercises of varying difficulty it is ideal for a graduate-level short course for applied mathematicians and engineers.


Introduction to the Analysis of Metric Spaces

Introduction to the Analysis of Metric Spaces

Author: John R. Giles

Publisher: Cambridge University Press

Published: 1987-09-03

Total Pages: 276

ISBN-13: 9780521359283

DOWNLOAD EBOOK

This is an introduction to the analysis of metric and normed linear spaces for undergraduate students in mathematics. Assuming a basic knowledge of real analysis and linear algebra, the student is exposed to the axiomatic method in analysis and is shown its power in exploiting the structure of fundamental analysis, which underlies a variety of applications. An example is the link between normed linear spaces and linear algebra; finite dimensional spaces are discussed early. The treatment progresses from the concrete to the abstract: thus metric spaces are studied in some detail before general topology is begun, though topological properties of metric spaces are explored in the book. Graded exercises are provided at the end of each section; in each set the earlier exercises are designed to assist in the detection of the structural properties in concrete examples while the later ones are more conceptually sophisticated.


Lectures on Real Analysis

Lectures on Real Analysis

Author: Finnur Lárusson

Publisher: Cambridge University Press

Published: 2012-06-07

Total Pages: 128

ISBN-13: 1139511041

DOWNLOAD EBOOK

This is a rigorous introduction to real analysis for undergraduate students, starting from the axioms for a complete ordered field and a little set theory. The book avoids any preconceptions about the real numbers and takes them to be nothing but the elements of a complete ordered field. All of the standard topics are included, as well as a proper treatment of the trigonometric functions, which many authors take for granted. The final chapters of the book provide a gentle, example-based introduction to metric spaces with an application to differential equations on the real line. The author's exposition is concise and to the point, helping students focus on the essentials. Over 200 exercises of varying difficulty are included, many of them adding to the theory in the text. The book is perfect for second-year undergraduates and for more advanced students who need a foundation in real analysis.


Topology of Metric Spaces

Topology of Metric Spaces

Author: S. Kumaresan

Publisher: Alpha Science Int'l Ltd.

Published: 2005

Total Pages: 172

ISBN-13: 9781842652503

DOWNLOAD EBOOK

"Topology of Metric Spaces gives a very streamlined development of a course in metric space topology emphasizing only the most useful concepts, concrete spaces and geometric ideas to encourage geometric thinking, to treat this as a preparatory ground for a general topology course, to use this course as a surrogate for real analysis and to help the students gain some perspective of modern analysis." "Eminently suitable for self-study, this book may also be used as a supplementary text for courses in general (or point-set) topology so that students will acquire a lot of concrete examples of spaces and maps."--BOOK JACKET.


New Trends on Analysis and Geometry in Metric Spaces

New Trends on Analysis and Geometry in Metric Spaces

Author: Fabrice Baudoin

Publisher: Springer Nature

Published: 2022-02-04

Total Pages: 312

ISBN-13: 3030841413

DOWNLOAD EBOOK

This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.


Analysis and Geometry of Metric Measure Spaces

Analysis and Geometry of Metric Measure Spaces

Author: Galia Devora Dafni

Publisher: American Mathematical Soc.

Published: 2013

Total Pages: 241

ISBN-13: 0821894188

DOWNLOAD EBOOK

Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.


Lectures on Analysis on Metric Spaces

Lectures on Analysis on Metric Spaces

Author: Juha Heinonen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 149

ISBN-13: 1461301319

DOWNLOAD EBOOK

The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.


Gradient Flows

Gradient Flows

Author: Luigi Ambrosio

Publisher: Springer Science & Business Media

Published: 2008-10-29

Total Pages: 333

ISBN-13: 376438722X

DOWNLOAD EBOOK

The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.


An Invitation to Alexandrov Geometry

An Invitation to Alexandrov Geometry

Author: Stephanie Alexander

Publisher: Springer

Published: 2019-05-08

Total Pages: 95

ISBN-13: 3030053121

DOWNLOAD EBOOK

Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.