Lectures in Functional Analysis and Operator Theory
Author: S. K. Berberian
Publisher: Springer
Published: 2014-04-09
Total Pages: 345
ISBN-13: 9780387900810
DOWNLOAD EBOOKRead and Download eBook Full
Author: S. K. Berberian
Publisher: Springer
Published: 2014-04-09
Total Pages: 345
ISBN-13: 9780387900810
DOWNLOAD EBOOKAuthor: Александр Яковлевич Хелемский
Publisher: American Mathematical Soc.
Published:
Total Pages: 496
ISBN-13: 9780821889695
DOWNLOAD EBOOKThe book is based on courses taught by the author at Moscow State University. Compared to many other books on the subject, it is unique in that the exposition is based on extensive use of the language and elementary constructions of category theory. Among topics featured in the book are the theory of Banach and Hilbert tensor products, the theory of distributions and weak topologies, and Borel operator calculus. The book contains many examples illustrating the general theory presented, as well as multiple exercises that help the reader to learn the subject. It can be used as a textbook on selected topics of functional analysis and operator theory. Prerequisites include linear algebra, elements of real analysis, and elements of the theory of metric spaces.
Author: Miroslav Lʹvovich Gorbachuk
Publisher: Springer Science & Business Media
Published: 1997
Total Pages: 240
ISBN-13: 9783764357047
DOWNLOAD EBOOKThis book is devoted to the theory of entire Hermitian operators, an important branch of functional analysis harmoniously combining the methods of operator theory and the theory of analytic functions. This theory anables various problems of classical and modern analysis to be looked at from a uniform point of view. In addition, it serves as a source for setting and solving many new problems in both theories. The three chapters of the book are based on the notes written by his students of M. G. Krein's lectures on the theory of entire operators with (1,1) deficiency index which he delivered in 1961 at the Pedagogical Institute of Odessa, and on his works on the extension theory of Hermitian operators and the theory of analytic functions. The theory is further developed in the direction of solving the problems set up by Krein at ICM-66 in the first two appendices. The first concerns the case of Hermitian operators with arbitrary defect numbers, entire with respect to an ordinary gauge and to a generalized one as well. The other focuses on the entire operators representable by differential operators. The third appendix is the translation from Russian of the unpublished notes of Krein's lecture in which, in particular, the place of the theory of entire operators in the whole analysis is elucidated. In Krein's mathematical heritage the theory of entire operators occupies a special position.
Author: John B Conway
Publisher: Springer
Published: 2019-03-09
Total Pages: 416
ISBN-13: 1475743831
DOWNLOAD EBOOKThis book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS
Author: Jan Janas
Publisher: Springer Science & Business Media
Published: 2007-04-29
Total Pages: 261
ISBN-13: 3764381353
DOWNLOAD EBOOKThis volume contains lectures delivered at the International Conference Operator Theory and its Applications in Mathematical Physics (OTAMP 2004), held at the Mathematical Research and Conference Center in Bedlewo near Poznan, Poland. The idea behind these lectures was to present interesting ramifications of operator methods in current research of mathematical physics.
Author: Manfred Einsiedler
Publisher: Springer
Published: 2017-11-21
Total Pages: 626
ISBN-13: 3319585401
DOWNLOAD EBOOKThis textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Author: V. Hutson
Publisher: Elsevier
Published: 2005-02-08
Total Pages: 442
ISBN-13: 0080527310
DOWNLOAD EBOOKFunctional analysis is a powerful tool when applied to mathematical problems arising from physical situations. The present book provides, by careful selection of material, a collection of concepts and techniques essential for the modern practitioner. Emphasis is placed on the solution of equations (including nonlinear and partial differential equations). The assumed background is limited to elementary real variable theory and finite-dimensional vector spaces. - Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering - Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results - Introduces each new topic with a clear, concise explanation - Includes numerous examples linking fundamental principles with applications - Solidifies the reader's understanding with numerous end-of-chapter problems
Author: Vladimir Kadets
Publisher: Springer
Published: 2018-07-10
Total Pages: 553
ISBN-13: 3319920049
DOWNLOAD EBOOKWritten by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
Author: Mohammed Hichem Mortad
Publisher: World Scientific
Published: 2018-10-15
Total Pages: 656
ISBN-13: 9813236272
DOWNLOAD EBOOKThis book is for third and fourth year university mathematics students (and Master students) as well as lecturers and tutors in mathematics and anyone who needs the basic facts on Operator Theory (e.g. Quantum Mechanists). The main setting for bounded linear operators here is a Hilbert space. There is, however, a generous part on General Functional Analysis (not too advanced though). There is also a chapter on Unbounded Closed Operators.The book is divided into two parts. The first part contains essential background on all of the covered topics with the sections: True or False Questions, Exercises, Tests and More Exercises. In the second part, readers may find answers and detailed solutions to the True or False Questions, Exercises and Tests.Another virtue of the book is the variety of the topics and the exercises and the way they are tackled. In many cases, the approaches are different from what is known in the literature. Also, some very recent results from research papers are included.
Author: Ved Prakash Gupta
Publisher: Springer
Published: 2015-05-28
Total Pages: 149
ISBN-13: 3319167189
DOWNLOAD EBOOKThis book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum information can be traced back to the mathematical work of John von Neumann, one of the pioneers of operator algebras, which forms the underpinning of most current mathematical treatments of the quantum theory, besides being one of the most dynamic areas of twentieth century functional analysis. Today, von Neumann’s foresight finds expression in the rapidly growing field of quantum information theory. These notes gather the content of lectures given by a very distinguished group of mathematicians and quantum information theorists, held at the IMSc in Chennai some years ago, and great care has been taken to present the material as a primer on the subject matter. Starting from the basic definitions of operator spaces and operator systems, this text proceeds to discuss several important theorems including Stinespring’s dilation theorem for completely positive maps and Kirchberg’s theorem on tensor products of C*-algebras. It also takes a closer look at the abstract characterization of operator systems and, motivated by the requirements of different tensor products in quantum information theory, the theory of tensor products in operator systems is discussed in detail. On the quantum information side, the book offers a rigorous treatment of quantifying entanglement in bipartite quantum systems, and moves on to review four different areas in which ideas from the theory of operator systems and operator algebras play a natural role: the issue of zero-error communication over quantum channels, the strong subadditivity property of quantum entropy, the different norms on quantum states and the corresponding induced norms on quantum channels, and, lastly, the applications of matrix-valued random variables in the quantum information setting.