Lectures on Geometric Measure Theory
Author: Leon Simon
Publisher:
Published: 1984
Total Pages: 286
ISBN-13: 9780867844290
DOWNLOAD EBOOKRead and Download eBook Full
Author: Leon Simon
Publisher:
Published: 1984
Total Pages: 286
ISBN-13: 9780867844290
DOWNLOAD EBOOKAuthor: Guido De Philippis
Publisher: Springer Nature
Published: 2021-03-23
Total Pages: 138
ISBN-13: 303065799X
DOWNLOAD EBOOKThis volume covers contemporary aspects of geometric measure theory with a focus on applications to partial differential equations, free boundary problems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysis to Free Boundary Problems” which took place in Cetraro, Italy, under the scientific direction of Matteo Focardi and Emanuele Spadaro. Providing a description of the structure of measures satisfying certain differential constraints, and covering regularity theory for Bernoulli type free boundary problems and water waves as well as regularity theory for the obstacle problems and the developments leading to applications to the Stefan problem, this volume will be of interest to students and researchers in mathematical analysis and its applications.
Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
Published: 2012-02-21
Total Pages: 193
ISBN-13: 8876423869
DOWNLOAD EBOOKThis textbook collects the notes for an introductory course in measure theory and integration. The course was taught by the authors to undergraduate students of the Scuola Normale Superiore, in the years 2000-2011. The goal of the course was to present, in a quick but rigorous way, the modern point of view on measure theory and integration, putting Lebesgue's Euclidean space theory into a more general context and presenting the basic applications to Fourier series, calculus and real analysis. The text can also pave the way to more advanced courses in probability, stochastic processes or geometric measure theory. Prerequisites for the book are a basic knowledge of calculus in one and several variables, metric spaces and linear algebra. All results presented here, as well as their proofs, are classical. The authors claim some originality only in the presentation and in the choice of the exercises. Detailed solutions to the exercises are provided in the final part of the book.
Author: Alessio Figalli
Publisher: Springer
Published: 2018-05-23
Total Pages: 224
ISBN-13: 3319740423
DOWNLOAD EBOOKThis book collects together lectures by some of the leaders in the field of partial differential equations and geometric measure theory. It features a wide variety of research topics in which a crucial role is played by the interaction of fine analytic techniques and deep geometric observations, combining the intuitive and geometric aspects of mathematics with analytical ideas and variational methods. The problems addressed are challenging and complex, and often require the use of several refined techniques to overcome the major difficulties encountered. The lectures, given during the course "Partial Differential Equations and Geometric Measure Theory'' in Cetraro, June 2–7, 2014, should help to encourage further research in the area. The enthusiasm of the speakers and the participants of this CIME course is reflected in the text.
Author: Terence Tao
Publisher: American Mathematical Soc.
Published: 2021-09-03
Total Pages: 206
ISBN-13: 1470466406
DOWNLOAD EBOOKThis is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
Published: 2008-12-15
Total Pages: 344
ISBN-13: 0817646795
DOWNLOAD EBOOKThis textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Author: Herbert Federer
Publisher: Springer
Published: 2014-11-25
Total Pages: 694
ISBN-13: 3642620108
DOWNLOAD EBOOK"This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)
Author: Francesco Maggi
Publisher: Cambridge University Press
Published: 2012-08-09
Total Pages: 475
ISBN-13: 1139560891
DOWNLOAD EBOOKThe marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.
Author: Camillo De Lellis
Publisher: European Mathematical Society
Published: 2008
Total Pages: 140
ISBN-13: 9783037190449
DOWNLOAD EBOOKThe characterization of rectifiable sets through the existence of densities is a pearl of geometric measure theory. The difficult proof, due to Preiss, relies on many beautiful and deep ideas and novel techniques. Some of them have already proven useful in other contexts, whereas others have not yet been exploited. These notes give a simple and short presentation of the former and provide some perspective of the latter. This text emerged from a course on rectifiability given at the University of Zurich. It is addressed both to researchers and students; the only prerequisite is a solid knowledge in standard measure theory. The first four chapters give an introduction to rectifiable sets and measures in Euclidean spaces, covering classical topics such as the area formula, the theorem of Marstrand and the most elementary rectifiability criterions. The fifth chapter is dedicated to a subtle rectifiability criterion due to Marstrand and generalized by Mattila, and the last three focus on Preiss' result. The aim is to provide a self-contained reference for anyone interested in an overview of this fascinating topic.
Author: Fanghua Lin
Publisher:
Published: 2010
Total Pages: 237
ISBN-13: 9781571462084
DOWNLOAD EBOOK