Offering a unique and powerful way to introduce the principles of statistical reasoning, Statistical Reasoning in Sports features engaging examples and a student-friendly approach. Starting from the very first chapter, students are able to ask questions, collect and analyze data, and draw conclusions using randomization tests. Is it harder to shoot free throws with distractions? We explore this question by designing an experiment, collecting the data, and using a hands-on simulation to analyze results. Completely covering the Common Core Standards for Probability and Statistics, Statistical Reasoning in Sports is an accessible and fun way to learn about statistics!
For courses in Statistical Literacy A qualitative approach teaches students how to reason using statistics Understanding the core ideas behind statistics is crucial to everyday success in the modern world. Statistical Reasoning for Everyday Life is designed to teach these core ideas through real-life examples so that students are able to understand the statistics needed in their college courses, reason with statistical information in their careers, and to evaluate and make everyday decisions using statistics. The authors approach each concept qualitatively, using computation techniques only to enhance understanding and build on ideas step-by-step, working up to real examples and complex case studies. The Fifth Edition has been revised to update many exercises, examples, and case studies to engage today’s students with the latest data and relevant topics. Also available with MyLab Statistics MyLab™ Statistics is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. NOTE: You are purchasing a standalone product; MyLab Statistics does not come packaged with this content. If you would like to purchase both the physical text and MyLab Statistics, search for: 0134701364 / 9780134701363 Statistical Reasoning for Everyday Life Plus NEW MyLab Statistics with Pearson eText -- Access Card Package, 5/e Package consists of: 0134494040 / 9780134494043 Statistical Reasoning for Everyday Life 0134678524 / 9780134678528 MyLab Statistics with Pearson eText -- Standalone Access Card -- for Statistical Reasoning for Everyday Life 0134678559 / 9780134678559 MyLab Statistics-- Royalty Bearing Content -- for Statistical Reasoning for Everyday Life
Increased attention is being paid to the need for statistically educated citizens: statistics is now included in the K-12 mathematics curriculum, increasing numbers of students are taking courses in high school, and introductory statistics courses are required in college. However, increasing the amount of instruction is not sufficient to prepare statistically literate citizens. A major change is needed in how statistics is taught. To bring about this change, three dimensions of teacher knowledge need to be addressed: their knowledge of statistical content, their pedagogical knowledge, and their statistical-pedagogical knowledge, i.e., their specific knowledge about how to teach statistics. This book is written for mathematics and statistics educators and researchers. It summarizes the research and highlights the important concepts for teachers to emphasize, and shows the interrelationships among concepts. It makes specific suggestions regarding how to build classroom activities, integrate technological tools, and assess students’ learning. This is a unique book. While providing a wealth of examples through lessons and data sets, it is also the best attempt by members of our profession to integrate suggestions from research findings with statistics concepts and pedagogy. The book’s message about the importance of listening to research is loud and clear, as is its message about alternative ways of teaching statistics. This book will impact instructors, giving them pause to consider: "Is what I’m doing now really the best thing for my students? What could I do better?" J. Michael Shaughnessy, Professor, Dept of Mathematical Sciences, Portland State University, USA This is a much-needed text for linking research and practice in teaching statistics. The authors have provided a comprehensive overview of the current state-of-the-art in statistics education research. The insights they have gleaned from the literature should be tremendously helpful for those involved in teaching and researching introductory courses. Randall E. Groth, Assistant Professor of Mathematics Education, Salisbury University, USA
Unique in that it collects, presents, and synthesizes cutting edge research on different aspects of statistical reasoning and applies this research to the teaching of statistics to students at all educational levels, this volume will prove of great value to mathematics and statistics education researchers, statistics educators, statisticians, cognitive psychologists, mathematics teachers, mathematics and statistics curriculum developers, and quantitative literacy experts in education and government.
Statistical Reasoning for Everyday Life, Fourth Edition, provides students with a clear understanding of statistical concepts and ideas so they can become better critical thinkers and decision makers, whether they decide to start a business, plan for their financial future, or just watch the news. The authors bring statistics to life by applying statistical concepts to the real world situations, taken from news sources, the internet, and individual experiences.
The four sections in this Third International Handbook are concerned with: (a) social, political and cultural dimensions in mathematics education; (b) mathematics education as a field of study; (c) technology in the mathematics curriculum; and (d) international perspectives on mathematics education. These themes are taken up by 84 internationally-recognized scholars, based in 26 different nations. Each of section is structured on the basis of past, present and future aspects. The first chapter in a section provides historical perspectives (“How did we get to where we are now?”); the middle chapters in a section analyze present-day key issues and themes (“Where are we now, and what recent events have been especially significant?”); and the final chapter in a section reflects on policy matters (“Where are we going, and what should we do?”). Readership: Teachers, mathematics educators, ed.policy makers, mathematicians, graduate students, undergraduate students. Large set of authoritative, international authors.
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
This book presents the breadth and diversity of empirical and practical work done on statistics education around the world. A wide range of methods are used to respond to the research questions that form it's base. Case studies of single students or teachers aimed at understanding reasoning processes, large-scale experimental studies attempting to generalize trends in the teaching and learning of statistics are both employed. Various epistemological stances are described and utilized. The teaching and learning of statistics is presented in multiple contexts in the book. These include designed settings for young children, students in formal schooling, tertiary level students, vocational schools, and teacher professional development. A diversity is evident also in the choices of what to teach (curriculum), when to teach (learning trajectory), how to teach (pedagogy), how to demonstrate evidence of learning (assessment) and what challenges teachers and students face when they solve statistical problems (reasoning and thinking).
This book discusses conceptual and pragmatic issues in the assessment of statistical knowledge and reasoning skills among students at the college and precollege levels, and the use of assessments to improve instruction. It is designed primarily for academic audiences involved in teaching statistics and mathematics, and in teacher education and training. The book is divided in four sections: (I) Assessment goals and frameworks, (2) Assessing conceptual understanding of statistical ideas, (3) Innovative models for classroom assessments, and (4) Assessing understanding of probability.