Learning from Imbalanced Data Sets

Learning from Imbalanced Data Sets

Author: Alberto Fernández

Publisher: Springer

Published: 2018-10-22

Total Pages: 385

ISBN-13: 3319980742

DOWNLOAD EBOOK

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.


Imbalanced Learning

Imbalanced Learning

Author: Haibo He

Publisher: John Wiley & Sons

Published: 2013-06-07

Total Pages: 222

ISBN-13: 1118646339

DOWNLOAD EBOOK

The first book of its kind to review the current status and future direction of the exciting new branch of machine learning/data mining called imbalanced learning Imbalanced learning focuses on how an intelligent system can learn when it is provided with imbalanced data. Solving imbalanced learning problems is critical in numerous data-intensive networked systems, including surveillance, security, Internet, finance, biomedical, defense, and more. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. The first comprehensive look at this new branch of machine learning, this book offers a critical review of the problem of imbalanced learning, covering the state of the art in techniques, principles, and real-world applications. Featuring contributions from experts in both academia and industry, Imbalanced Learning: Foundations, Algorithms, and Applications provides chapter coverage on: Foundations of Imbalanced Learning Imbalanced Datasets: From Sampling to Classifiers Ensemble Methods for Class Imbalance Learning Class Imbalance Learning Methods for Support Vector Machines Class Imbalance and Active Learning Nonstationary Stream Data Learning with Imbalanced Class Distribution Assessment Metrics for Imbalanced Learning Imbalanced Learning: Foundations, Algorithms, and Applications will help scientists and engineers learn how to tackle the problem of learning from imbalanced datasets, and gain insight into current developments in the field as well as future research directions.


Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook

Author: Oded Maimon

Publisher: Springer Science & Business Media

Published: 2006-05-28

Total Pages: 1378

ISBN-13: 038725465X

DOWNLOAD EBOOK

Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.


Imbalanced Classification with Python

Imbalanced Classification with Python

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2020-01-14

Total Pages: 463

ISBN-13:

DOWNLOAD EBOOK

Imbalanced classification are those classification tasks where the distribution of examples across the classes is not equal. Cut through the equations, Greek letters, and confusion, and discover the specialized techniques data preparation techniques, learning algorithms, and performance metrics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently develop robust models for your own imbalanced classification projects.


Encyclopedia of Machine Learning

Encyclopedia of Machine Learning

Author: Claude Sammut

Publisher: Springer Science & Business Media

Published: 2011-03-28

Total Pages: 1061

ISBN-13: 0387307680

DOWNLOAD EBOOK

This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.


Advances in Intelligent Data Analysis

Advances in Intelligent Data Analysis

Author: Frank Hoffmann

Publisher: Springer Science & Business Media

Published: 2001-09-05

Total Pages: 395

ISBN-13: 3540425810

DOWNLOAD EBOOK

Thismeantthat,ofthealmost150submissionswereceived,wewereableto selectonly23fororalpresentationand16forposterpresentation. Inaddition tothesecontributedpapers,therewasakeynoteaddressfromDarylPregibon, invitedpresentationsfromKatharinaMorik,RolfBackhofen,andSunilRao,and aspecial‘datachallenge’session,whereresearchersdescribedtheirattemptsto analyseachallengingdatasetprovidedbyPaulCohen. Thisacceptancerate enabledustoensureahighqualityconference,whilealsopermittingustop- videgoodcoverageofthevarioustopicssubsumedwithinthegeneralheading ofintelligentdataanalysis. Wewouldliketoexpressourthanksandappreciationtoeveryoneinvolved intheorganizationofthemeetingandtheselectionofthepapers. Itisthe behind-the-scenese?ortswhichensurethesmoothrunningandsuccessofany conference.


Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases

Author: Walter Daelemans

Publisher: Springer Science & Business Media

Published: 2008-09-04

Total Pages: 714

ISBN-13: 354087478X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.


Machine Learning: ECML 2004

Machine Learning: ECML 2004

Author: Jean-Francois Boulicaut

Publisher: Springer

Published: 2004-11-05

Total Pages: 597

ISBN-13: 3540301151

DOWNLOAD EBOOK

The proceedings of ECML/PKDD 2004 are published in two separate, albeit - tertwined,volumes:theProceedingsofthe 15thEuropeanConferenceonMac- ne Learning (LNAI 3201) and the Proceedings of the 8th European Conferences on Principles and Practice of Knowledge Discovery in Databases (LNAI 3202). The two conferences were co-located in Pisa, Tuscany, Italy during September 20–24, 2004. It was the fourth time in a row that ECML and PKDD were co-located. - ter the successful co-locations in Freiburg (2001), Helsinki (2002), and Cavtat- Dubrovnik (2003), it became clear that researchersstrongly supported the or- nization of a major scienti?c event about machine learning and data mining in Europe. We are happy to provide some statistics about the conferences. 581 di?erent papers were submitted to ECML/PKDD (about a 75% increase over 2003); 280 weresubmittedtoECML2004only,194weresubmittedtoPKDD2004only,and 107weresubmitted to both.Aroundhalfofthe authorsforsubmitted papersare from outside Europe, which is a clear indicator of the increasing attractiveness of ECML/PKDD. The Program Committee members were deeply involved in what turned out to be a highly competitive selection process. We assigned each paper to 3 - viewers, deciding on the appropriate PC for papers submitted to both ECML and PKDD. As a result, ECML PC members reviewed 312 papers and PKDD PC members reviewed 269 papers. We accepted for publication regular papers (45 for ECML 2004 and 39 for PKDD 2004) and short papers that were as- ciated with poster presentations (6 for ECML 2004 and 9 for PKDD 2004). The globalacceptance ratewas14.5%for regular papers(17% if we include the short papers).


Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013)

Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013)

Author: Tutut Herawan

Publisher: Springer Science & Business Media

Published: 2013-12-14

Total Pages: 728

ISBN-13: 9814585181

DOWNLOAD EBOOK

The proceeding is a collection of research papers presented at the International Conference on Data Engineering 2013 (DaEng-2013), a conference dedicated to address the challenges in the areas of database, information retrieval, data mining and knowledge management, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on advanced on data engineering concepts and establishing new collaborations in these areas. The topics of interest are as follows but are not limited to: • Database theory • Data management • Data mining and warehousing • Data privacy & security • Information retrieval, integration and visualization • Information system • Knowledge discovery in databases • Mobile, grid and cloud computing • Knowledge-based • Knowledge management • Web data, services and intelligence


Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance

Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance

Author: Rana, Dipti P.

Publisher: IGI Global

Published: 2021-06-04

Total Pages: 309

ISBN-13: 1799873730

DOWNLOAD EBOOK

Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance. Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.