Learning from Data Streams in Dynamic Environments

Learning from Data Streams in Dynamic Environments

Author: Moamar Sayed-Mouchaweh

Publisher: Springer

Published: 2015-12-10

Total Pages: 82

ISBN-13: 331925667X

DOWNLOAD EBOOK

This book addresses the problems of modeling, prediction, classification, data understanding and processing in non-stationary and unpredictable environments. It presents major and well-known methods and approaches for the design of systems able to learn and to fully adapt its structure and to adjust its parameters according to the changes in their environments. Also presents the problem of learning in non-stationary environments, its interests, its applications and challenges and studies the complementarities and the links between the different methods and techniques of learning in evolving and non-stationary environments.


Machine Learning for Data Streams

Machine Learning for Data Streams

Author: Albert Bifet

Publisher: MIT Press

Published: 2018-03-16

Total Pages: 262

ISBN-13: 0262346052

DOWNLOAD EBOOK

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.


Learning from Data Streams in Evolving Environments

Learning from Data Streams in Evolving Environments

Author: Moamar Sayed-Mouchaweh

Publisher: Springer

Published: 2018-07-28

Total Pages: 320

ISBN-13: 3319898035

DOWNLOAD EBOOK

This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpret data streams in non-stationary environments. The book includes the required notions, definitions, and background to understand the problem of learning from data streams in non-stationary environments and synthesizes the state-of-the-art in the domain, discussing advanced aspects and concepts and presenting open problems and future challenges in this field. Provides multiple examples to facilitate the understanding data streams in non-stationary environments; Presents several application cases to show how the methods solve different real world problems; Discusses the links between methods to help stimulate new research and application directions.


Learning in Non-Stationary Environments

Learning in Non-Stationary Environments

Author: Moamar Sayed-Mouchaweh

Publisher: Springer Science & Business Media

Published: 2012-04-13

Total Pages: 439

ISBN-13: 1441980202

DOWNLOAD EBOOK

Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations. This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.


Learning from Data Streams

Learning from Data Streams

Author: João Gama

Publisher: Springer Science & Business Media

Published: 2007-10-11

Total Pages: 486

ISBN-13: 3540736786

DOWNLOAD EBOOK

Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.


Machine Learning: ECML-93

Machine Learning: ECML-93

Author: Pavel B. Brazdil

Publisher: Springer

Published: 2006-01-21

Total Pages: 480

ISBN-13: 9783540475972

DOWNLOAD EBOOK

This volume contains the proceedings of the Eurpoean Conference on Machine Learning (ECML-93), continuing the tradition of the five earlier EWSLs (European Working Sessions on Learning). The aim of these conferences is to provide a platform for presenting the latest results in the area of machine learning. The ECML-93 programme included invited talks, selected papers, and the presentation of ongoing work in poster sessions. The programme was completed by several workshops on specific topics. The volume contains papers related to all these activities. The first chapter of the proceedings contains two invited papers, one by Ross Quinlan and one by Stephen Muggleton on inductive logic programming. The second chapter contains 18 scientific papers accepted for the main sessions of the conference. The third chapter contains 18 shorter position papers. The final chapter includes three overview papers related to the ECML-93 workshops.


Knowledge Discovery from Data Streams

Knowledge Discovery from Data Streams

Author: Joao Gama

Publisher: CRC Press

Published: 2010-05-25

Total Pages: 256

ISBN-13: 1439826129

DOWNLOAD EBOOK

Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents


Machine Learning for Cyber Physical Systems

Machine Learning for Cyber Physical Systems

Author: Jürgen Beyerer

Publisher: Springer Vieweg

Published: 2016-12-06

Total Pages: 0

ISBN-13: 9783662538050

DOWNLOAD EBOOK

The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, September 29th, 2016. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.


Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013

Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013

Author: Robert Burduk

Publisher: Springer Science & Business Media

Published: 2013-05-23

Total Pages: 887

ISBN-13: 3319009699

DOWNLOAD EBOOK

The computer recognition systems are nowadays one of the most promising directions in artificial intelligence. This book is the most comprehensive study of this field. It contains a collection of 86 carefully selected articles contributed by experts of pattern recognition. It reports on current research with respect to both methodology and applications. In particular, it includes the following sections: Biometrics Data Stream Classification and Big Data Analytics Features, learning, and classifiers Image processing and computer vision Medical applications Miscellaneous applications Pattern recognition and image processing in robotics Speech and word recognition This book is a great reference tool for scientists who deal with the problems of designing computer pattern recognition systems. Its target readers can be the as well researchers as students of computer science, artificial intelligence or robotics.


Metalearning

Metalearning

Author: Pavel Brazdil

Publisher: Springer Science & Business Media

Published: 2008-11-26

Total Pages: 182

ISBN-13: 3540732624

DOWNLOAD EBOOK

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.