Learning Apache Thrift

Learning Apache Thrift

Author: Krzysztof Rakowski

Publisher: Packt Publishing Ltd

Published: 2015-12-30

Total Pages: 204

ISBN-13: 1785888676

DOWNLOAD EBOOK

Make applications cross-communicate using Apache Thrift! About This Book Leverage Apache Thrift to enable applications written in different programming languages (Java, C++, Python, PHP, Ruby, and so on) to cross-communicate. Learn to make your services ready for real-world applications by using stepwise examples and modifying code from Industry giants. Be a crackerjack at solving Apache Thrift-related issues. Who This Book Is For If you have some experience of developing applications in one or more languages supported by Apache Thrift (C++, Java, PHP, Python, Ruby, and others) and want to broaden your knowledge and skills in building cross-platform, scalable applications, then this book is for you. What You Will Learn Understand the need for cross-language services and the basics of Apache Thrift. Learn how Apache Thrift works and what problems it solves. Determine when to use Apache Thrift instead of other methods (REST API), and when not to use it. Create and run an example application using Apache Thrift. Use Apache Thrift in your applications written in different languages supported by Apache Thrift (PHP, Python, Ruby, Java, and C++). Handle exceptions and deal with errors. Modify code in different languages. Use Apache Thrift in the production environments of big applications. In Detail With modern software systems being increasingly complex, providing a scalable communication architecture for applications in different languages is tedious. The Apache Thrift framework is the solution to this problem! It helps build efficient and easy-to-maintain services and offers a plethora of options matching your application type by supporting several popular programming languages, including C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk, OCaml, and Delphi. This book will help you set aside the basics of service-oriented systems through your first Apache Thrift-powered app. Then, progressing to more complex examples, it will provide you with tips for running large-scale applications in production environments. You will learn how to assess when Apache Thrift is the best tool to be used. To start with, you will run a simple example application, learning the framework's structure along the way; you will quickly advance to more complex systems that will help you solve various real-life problems. Moreover, you will be able to add a communication layer to every application written in one of the popular programming languages, with support for various data types and error handling. Further, you will learn how pre-eminent companies use Apache Thrift in their popular applications. This book is a great starting point if you want to use one of the best tools available to develop cross-language applications in service-oriented architectures. Style and approach A stepwise guide to learning Apache Thrift, with ready-to-run examples explained comprehensively. Advanced topics supply the inspiration for further work.


Programming Hive

Programming Hive

Author: Edward Capriolo

Publisher: "O'Reilly Media, Inc."

Published: 2012-09-26

Total Pages: 351

ISBN-13: 1449319335

DOWNLOAD EBOOK

Need to move a relational database application to Hadoop? This comprehensive guide introduces you to Apache Hive, Hadoop’s data warehouse infrastructure. You’ll quickly learn how to use Hive’s SQL dialect—HiveQL—to summarize, query, and analyze large datasets stored in Hadoop’s distributed filesystem. This example-driven guide shows you how to set up and configure Hive in your environment, provides a detailed overview of Hadoop and MapReduce, and demonstrates how Hive works within the Hadoop ecosystem. You’ll also find real-world case studies that describe how companies have used Hive to solve unique problems involving petabytes of data. Use Hive to create, alter, and drop databases, tables, views, functions, and indexes Customize data formats and storage options, from files to external databases Load and extract data from tables—and use queries, grouping, filtering, joining, and other conventional query methods Gain best practices for creating user defined functions (UDFs) Learn Hive patterns you should use and anti-patterns you should avoid Integrate Hive with other data processing programs Use storage handlers for NoSQL databases and other datastores Learn the pros and cons of running Hive on Amazon’s Elastic MapReduce


Apache Hive Cookbook

Apache Hive Cookbook

Author: Hanish Bansal

Publisher: Packt Publishing Ltd

Published: 2016-04-29

Total Pages: 268

ISBN-13: 1782161090

DOWNLOAD EBOOK

Easy, hands-on recipes to help you understand Hive and its integration with frameworks that are used widely in today's big data world About This Book Grasp a complete reference of different Hive topics. Get to know the latest recipes in development in Hive including CRUD operations Understand Hive internals and integration of Hive with different frameworks used in today's world. Who This Book Is For The book is intended for those who want to start in Hive or who have basic understanding of Hive framework. Prior knowledge of basic SQL command is also required What You Will Learn Learn different features and offering on the latest Hive Understand the working and structure of the Hive internals Get an insight on the latest development in Hive framework Grasp the concepts of Hive Data Model Master the key concepts like Partition, Buckets and Statistics Know how to integrate Hive with other frameworks such as Spark, Accumulo, etc In Detail Hive was developed by Facebook and later open sourced in Apache community. Hive provides SQL like interface to run queries on Big Data frameworks. Hive provides SQL like syntax also called as HiveQL that includes all SQL capabilities like analytical functions which are the need of the hour in today's Big Data world. This book provides you easy installation steps with different types of metastores supported by Hive. This book has simple and easy to learn recipes for configuring Hive clients and services. You would also learn different Hive optimizations including Partitions and Bucketing. The book also covers the source code explanation of latest Hive version. Hive Query Language is being used by other frameworks including spark. Towards the end you will cover integration of Hive with these frameworks. Style and approach Starting with the basics and covering the core concepts with the practical usage, this book is a complete guide to learn and explore Hive offerings.


Learning Apache Cassandra

Learning Apache Cassandra

Author: Mat Brown

Publisher: Packt Publishing Ltd

Published: 2015-02-25

Total Pages: 246

ISBN-13: 1783989211

DOWNLOAD EBOOK

If you're an application developer familiar with SQL databases such as MySQL or Postgres, and you want to explore distributed databases such as Cassandra, this is the perfect guide for you. Even if you've never worked with a distributed database before, Cassandra's intuitive programming interface coupled with the step-by-step examples in this book will have you building highly scalable persistence layers for your applications in no time.


Spark: The Definitive Guide

Spark: The Definitive Guide

Author: Bill Chambers

Publisher: "O'Reilly Media, Inc."

Published: 2018-02-08

Total Pages: 594

ISBN-13: 1491912294

DOWNLOAD EBOOK

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation


Architecting HBase Applications

Architecting HBase Applications

Author: Jean-Marc Spaggiari

Publisher: "O'Reilly Media, Inc."

Published: 2016-07-18

Total Pages: 251

ISBN-13: 1491916117

DOWNLOAD EBOOK

Lots of HBase books, online HBase guides, and HBase mailing lists/forums are available if you need to know how HBase works. But if you want to take a deep dive into use cases, features, and troubleshooting, Architecting HBase Applications is the right source for you. With this book, you'll learn a controlled set of APIs that coincide with use-case examples and easily deployed use-case models, as well as sizing/best practices to help jump start your enterprise application development and deployment.


Cassandra: The Definitive Guide

Cassandra: The Definitive Guide

Author: Jeff Carpenter

Publisher: "O'Reilly Media, Inc."

Published: 2016-06-29

Total Pages: 369

ISBN-13: 1491933631

DOWNLOAD EBOOK

Imagine what you could do if scalability wasn't a problem. With this hands-on guide, you’ll learn how the Cassandra database management system handles hundreds of terabytes of data while remaining highly available across multiple data centers. This expanded second edition—updated for Cassandra 3.0—provides the technical details and practical examples you need to put this database to work in a production environment. Authors Jeff Carpenter and Eben Hewitt demonstrate the advantages of Cassandra’s non-relational design, with special attention to data modeling. If you’re a developer, DBA, or application architect looking to solve a database scaling issue or future-proof your application, this guide helps you harness Cassandra’s speed and flexibility. Understand Cassandra’s distributed and decentralized structure Use the Cassandra Query Language (CQL) and cqlsh—the CQL shell Create a working data model and compare it with an equivalent relational model Develop sample applications using client drivers for languages including Java, Python, and Node.js Explore cluster topology and learn how nodes exchange data Maintain a high level of performance in your cluster Deploy Cassandra on site, in the Cloud, or with Docker Integrate Cassandra with Spark, Hadoop, Elasticsearch, Solr, and Lucene


Apache Spark in 24 Hours, Sams Teach Yourself

Apache Spark in 24 Hours, Sams Teach Yourself

Author: Jeffrey Aven

Publisher: Sams Publishing

Published: 2016-08-31

Total Pages: 1353

ISBN-13: 0134445821

DOWNLOAD EBOOK

Apache Spark is a fast, scalable, and flexible open source distributed processing engine for big data systems and is one of the most active open source big data projects to date. In just 24 lessons of one hour or less, Sams Teach Yourself Apache Spark in 24 Hours helps you build practical Big Data solutions that leverage Spark’s amazing speed, scalability, simplicity, and versatility. This book’s straightforward, step-by-step approach shows you how to deploy, program, optimize, manage, integrate, and extend Spark–now, and for years to come. You’ll discover how to create powerful solutions encompassing cloud computing, real-time stream processing, machine learning, and more. Every lesson builds on what you’ve already learned, giving you a rock-solid foundation for real-world success. Whether you are a data analyst, data engineer, data scientist, or data steward, learning Spark will help you to advance your career or embark on a new career in the booming area of Big Data. Learn how to • Discover what Apache Spark does and how it fits into the Big Data landscape • Deploy and run Spark locally or in the cloud • Interact with Spark from the shell • Make the most of the Spark Cluster Architecture • Develop Spark applications with Scala and functional Python • Program with the Spark API, including transformations and actions • Apply practical data engineering/analysis approaches designed for Spark • Use Resilient Distributed Datasets (RDDs) for caching, persistence, and output • Optimize Spark solution performance • Use Spark with SQL (via Spark SQL) and with NoSQL (via Cassandra) • Leverage cutting-edge functional programming techniques • Extend Spark with streaming, R, and Sparkling Water • Start building Spark-based machine learning and graph-processing applications • Explore advanced messaging technologies, including Kafka • Preview and prepare for Spark’s next generation of innovations Instructions walk you through common questions, issues, and tasks; Q-and-As, Quizzes, and Exercises build and test your knowledge; "Did You Know?" tips offer insider advice and shortcuts; and "Watch Out!" alerts help you avoid pitfalls. By the time you're finished, you'll be comfortable using Apache Spark to solve a wide spectrum of Big Data problems.


Apache Hive Essentials

Apache Hive Essentials

Author: Dayong Du

Publisher: Packt Publishing Ltd

Published: 2018-06-30

Total Pages: 203

ISBN-13: 1789136512

DOWNLOAD EBOOK

This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive. Key Features Grasp the skills needed to write efficient Hive queries to analyze the Big Data Discover how Hive can coexist and work with other tools within the Hadoop ecosystem Uses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3 Book Description In this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment. Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey. By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problems What you will learn Create and set up the Hive environment Discover how to use Hive's definition language to describe data Discover interesting data by joining and filtering datasets in Hive Transform data by using Hive sorting, ordering, and functions Aggregate and sample data in different ways Boost Hive query performance and enhance data security in Hive Customize Hive to your needs by using user-defined functions and integrate it with other tools Who this book is for If you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book.


Learning Spark

Learning Spark

Author: Jules S. Damji

Publisher: O'Reilly Media

Published: 2020-07-16

Total Pages: 400

ISBN-13: 1492050016

DOWNLOAD EBOOK

Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow