Learn Data Science Using SAS Studio

Learn Data Science Using SAS Studio

Author: Engy Fouda

Publisher: Apress

Published: 2020-10-13

Total Pages: 226

ISBN-13: 9781484262368

DOWNLOAD EBOOK

Do you want to create data analysis reports without writing a line of code? This book introduces SAS Studio, a free data science web browser-based product for educational and non-commercial purposes. The power of SAS Studio comes from its visual point-and-click user interface that generates SAS code. It is easier to learn SAS Studio than to learn R and Python to accomplish data cleaning, statistics, and visualization tasks. The book includes a case study about analyzing the data required for predicting the results of presidential elections in the state of Maine for 2016 and 2020. In addition to the presidential elections, the book provides real-life examples including analyzing stocks, oil and gold prices, crime, marketing, and healthcare. You will see data science in action and how easy it is to perform complicated tasks and visualizations in SAS Studio. You will learn, step-by-step, how to do visualizations, including maps. In most cases, you will not need a line of code as you work with the SAS Studio graphical user interface. The book includes explanations of the code that SAS Studio generates automatically. You will learn how to edit this code to perform more complicated advanced tasks. The book introduces you to multiple SAS products such as SAS Viya, SAS Analytics, and SAS Visual Statistics. What You Will Learn Become familiar with SAS Studio IDE Understand essential visualizations Know the fundamental statistical analysis required in most data science and analytics reports Clean the most common data set problems Use linear progression for data prediction Write programs in SAS Get introduced to SAS-Viya, which is more potent than SAS studio Who This Book Is For A general audience of people who are new to data science, students, and data analysts and scientists who are experienced but new to SAS. No programming or in-depth statistics knowledge is needed.


Machine Learning with SAS Viya

Machine Learning with SAS Viya

Author: SAS Institute Inc.

Publisher: SAS Institute

Published: 2020-05-29

Total Pages: 295

ISBN-13: 1951685377

DOWNLOAD EBOOK

Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance


Learning SAS by Example

Learning SAS by Example

Author: Ron Cody

Publisher: SAS Institute

Published: 2018-07-03

Total Pages: 553

ISBN-13: 1635266564

DOWNLOAD EBOOK

Learn to program SAS by example! Learning SAS by Example, A Programmer’s Guide, Second Edition, teaches SAS programming from very basic concepts to more advanced topics. Because most programmers prefer examples rather than reference-type syntax, this book uses short examples to explain each topic. The second edition has brought this classic book on SAS programming up to the latest SAS version, with new chapters that cover topics such as PROC SGPLOT and Perl regular expressions. This book belongs on the shelf (or e-book reader) of anyone who programs in SAS, from those with little programming experience who want to learn SAS to intermediate and even advanced SAS programmers who want to learn new techniques or identify new ways to accomplish existing tasks. In an instructive and conversational tone, author Ron Cody clearly explains each programming technique and then illustrates it with one or more real-life examples, followed by a detailed description of how the program works. The text is divided into four major sections: Getting Started, DATA Step Processing, Presenting and Summarizing Your Data, and Advanced Topics. Subjects addressed include Reading data from external sources Learning details of DATA step programming Subsetting and combining SAS data sets Understanding SAS functions and working with arrays Creating reports with PROC REPORT and PROC TABULATE Getting started with the SAS macro language Leveraging PROC SQL Generating high-quality graphics Using advanced features of user-defined formats and informats Restructuring SAS data sets Working with multiple observations per subject Getting started with Perl regular expressions You can test your knowledge and hone your skills by solving the problems at the end of each chapter.


Applying Data Science

Applying Data Science

Author: Gerhard Svolba

Publisher: SAS Institute

Published: 2017-03-29

Total Pages: 490

ISBN-13: 1635260566

DOWNLOAD EBOOK

See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.


End-to-End Data Science with SAS

End-to-End Data Science with SAS

Author: James Gearheart

Publisher: SAS Institute

Published: 2020-06-26

Total Pages: 246

ISBN-13: 1642958069

DOWNLOAD EBOOK

Learn data science concepts with real-world examples in SAS! End-to-End Data Science with SAS: A Hands-On Programming Guide provides clear and practical explanations of the data science environment, machine learning techniques, and the SAS programming knowledge necessary to develop machine learning models in any industry. The book covers concepts including understanding the business need, creating a modeling data set, linear regression, parametric classification models, and non-parametric classification models. Real-world business examples and example code are used to demonstrate each process step-by-step. Although a significant amount of background information and supporting mathematics are presented, the book is not structured as a textbook, but rather it is a user’s guide for the application of data science and machine learning in a business environment. Readers will learn how to think like a data scientist, wrangle messy data, choose a model, and evaluate the model’s effectiveness. New data scientists or professionals who want more experience with SAS will find this book to be an invaluable reference. Take your data science career to the next level by mastering SAS programming for machine learning models.


Introduction to Statistical and Machine Learning Methods for Data Science

Introduction to Statistical and Machine Learning Methods for Data Science

Author: Carlos Andre Reis Pinheiro

Publisher: SAS Institute

Published: 2021-08-06

Total Pages: 169

ISBN-13: 1953329624

DOWNLOAD EBOOK

Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.


Natural Language Processing with SAS

Natural Language Processing with SAS

Author:

Publisher:

Published: 2020-08-31

Total Pages: 74

ISBN-13: 9781952363184

DOWNLOAD EBOOK

Natural Language Processing (NLP) is a branch of artificial intelligence that helps computers understand, interpret, and emulate written or spoken human language. NLP draws from many disciplines including human-generated linguistic rules, machine learning, and deep learning to fill the gap between human communication and machine understanding. The papers included in this special collection demonstrate how NLP can be used to scale the human act of reading, organizing, and quantifying text data.


The Little SAS Book

The Little SAS Book

Author: Lora D. Delwiche

Publisher: SAS Institute

Published: 2019-10-11

Total Pages: 512

ISBN-13: 1642953431

DOWNLOAD EBOOK

A classic that just keeps getting better, The Little SAS Book is essential for anyone learning SAS programming. Lora Delwiche and Susan Slaughter offer a user-friendly approach so that readers can quickly and easily learn the most commonly used features of the SAS language. Each topic is presented in a self-contained, two-page layout complete with examples and graphics. Nearly every section has been revised to ensure that the sixth edition is fully up-to-date. This edition is also interface-independent, written for all SAS programmers whether they use SAS Studio, SAS Enterprise Guide, or the SAS windowing environment. New sections have been added covering PROC SQL, iterative DO loops, DO WHILE and DO UNTIL statements, %DO statements, using variable names with special characters, the ODS EXCEL destination, and the XLSX LIBNAME engine. This title belongs on every SAS programmer's bookshelf. It's a resource not just to get you started, but one you will return to as you continue to improve your programming skills. Learn more about the updates to The Little SAS Book, Sixth Edition here. Reviews for The Little SAS Book, Sixth Edition can be read here.


Machine Learning with SAS

Machine Learning with SAS

Author:

Publisher:

Published: 2019-06-21

Total Pages: 168

ISBN-13: 9781642954760

DOWNLOAD EBOOK

Machine learning is a branch of artificial intelligence (AI) that develops algorithms that allow computers to learn from examples without being explicitly programmed. Machine learning identifies patterns in the data and models the results. These descriptive models enable a better understanding of the underlying insights the data offers. Machine learning is a powerful tool with many applications, from real-time fraud detection, the Internet of Things (IoT), recommender systems, and smart cars. It will not be long before some form of machine learning is integrated into all machines, augmenting the user experience and automatically running many processes intelligently. SAS offers many different solutions to use machine learning to model and predict your data. The papers included in this special collection demonstrate how cutting-edge machine learning techniques can benefit your data analysis. Also available free as a PDF from sas.com/books.