Laws and Symmetry

Laws and Symmetry

Author: Bas C. van Fraassen

Publisher: Clarendon Press

Published: 1989-11-02

Total Pages: 410

ISBN-13: 0191519995

DOWNLOAD EBOOK

Metaphysicians speak of laws of nature in terms of necessity and universality; scientists do so in terms of symmetry and invariance. This book argues that no metaphysical account of laws can succeed. The author analyses and rejects the arguments that there are laws of nature, or that we must believe that there are. He argues that we should discard the idea of law as an inadequate clue to science. After exploring what this means for general epistemology, the book develops the empiricist view of science as a construction of models to represent the phenomena. Concepts of symmetry, transformation, and invariance illuminate the structure of such models. A central role is played in science by symmetry arguments, and it is shown how these function also in the philosophical analysis of probability. The advocated approach presupposes no realism about laws or necessities in nature.


Symmetry Rules

Symmetry Rules

Author: Joseph Rosen

Publisher: Springer Science & Business Media

Published: 2008-02-20

Total Pages: 312

ISBN-13: 3540759735

DOWNLOAD EBOOK

When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. Written by a renowned expert, this book will convince all interested readers of the importance of symmetry in science.


Symmetry

Symmetry

Author: R. McWeeny

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 263

ISBN-13: 1483226247

DOWNLOAD EBOOK

Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.


Symmetry and the Beautiful Universe

Symmetry and the Beautiful Universe

Author: Leon M. Lederman

Publisher: Prometheus Books

Published: 2011-11-29

Total Pages: 363

ISBN-13: 1615920412

DOWNLOAD EBOOK

When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.


Noether's Theorem and Symmetry

Noether's Theorem and Symmetry

Author: P.G.L. Leach

Publisher: MDPI

Published: 2020-03-05

Total Pages: 186

ISBN-13: 3039282344

DOWNLOAD EBOOK

In Noether's original presentation of her celebrated theorem of 1918, allowances were made for the dependence of the coefficient functions of the differential operator which generated the infinitesimal transformation of the Action Integral upon the derivatives of the dependent variable(s), the so-called generalized, or dynamical, symmetries. A similar allowance is to be found in the variables of the boundary function, often termed a gauge function by those who have not read the original paper. This generality was lost after texts such as those of Courant and Hilbert or Lovelock and Rund confined attention to only point transformations. In recent decades, this diminution of the power of Noether's Theorem has been partly countered, in particular, in the review of Sarlet and Cantrijn. In this Special Issue, we emphasize the generality of Noether's Theorem in its original form and explore the applicability of even more general coefficient functions by allowing for nonlocal terms. We also look at the application of these more general symmetries to problems in which parameters or parametric functions have a more general dependence upon the independent variables.


Physics from Symmetry

Physics from Symmetry

Author: Jakob Schwichtenberg

Publisher: Springer

Published: 2017-12-01

Total Pages: 294

ISBN-13: 3319666312

DOWNLOAD EBOOK

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.


Laws and Lawmakers

Laws and Lawmakers

Author: Marc Lange

Publisher: Oxford University Press

Published: 2009-07-09

Total Pages: 277

ISBN-13: 019974503X

DOWNLOAD EBOOK

What distinguishes laws of nature from ordinary facts? What are the "lawmakers": the facts in virtue of which the laws are laws? How can laws be necessary, yet contingent? Lange provocatively argues that laws are distinguished by their necessity, which is grounded in primitive subjunctive facts, while also providing a non-technical and accessible survey of the field.


The Natural Law of Cycles

The Natural Law of Cycles

Author: James H. Bunn

Publisher: Routledge

Published: 2017-07-28

Total Pages: 387

ISBN-13: 1351478958

DOWNLOAD EBOOK

The Natural Law of Cycles assembles scientific work from different disciplines to show how research on angular momentum and rotational symmetry can be used to develop a law of energy cycles as a local and global influence. Angular momentum regulates small-scale rotational cycles such as the swimming of fish in water, the running of animals on land, and the flight of birds in air. Also, it regulates large-scale rotation cycles such as global currents of wind and water.James H. Bunn introduces concepts of symmetry, balance, and angular momentum, showing how together they shape the mobile symmetries of animals. Chapter 1 studies the configurations of animals as they move in a head-first direction. Chapter 2 shows how sea animals follow currents and tides generated by the rotational cycles of the earth. In chapter 3, Bunn explores the biomechanical pace of walking as a partial cycle of rotating limbs. On a large scale, angular momentum governs balanced shifts in plate tectonics.Chapter 4 begins with an examination of rotational wind patterns in terms of the counter-balancing forces of angular momentum. The author shows how these winds augment the flights of birds during migrations. A final chapter centres on the conservation of energy as the most basic principle of science. Bunn argues that in the nineteenth century the unity of nature was seen in the emergent concept of energy, not matter, as the source of power, including the movements of animals and machines. In each chapter Bunn features environmental writers who celebrate mobile symmetries. This book will interest students, naturalists, and advocates of the environmental movement.


Emmy Noether's Wonderful Theorem

Emmy Noether's Wonderful Theorem

Author: Dwight E. Neuenschwander

Publisher: JHU Press

Published: 2017-04-01

Total Pages: 338

ISBN-13: 1421422689

DOWNLOAD EBOOK

One of the most important—and beautiful—mathematical solutions ever devised, Noether’s theorem touches on every aspect of physics. "In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began."—Albert Einstein The year was 1915, and the young mathematician Emmy Noether had just settled into Göttingen University when Albert Einstein visited to lecture on his nearly finished general theory of relativity. Two leading mathematicians of the day, David Hilbert and Felix Klein, dug into the new theory with gusto, but had difficulty reconciling it with what was known about the conservation of energy. Knowing of her expertise in invariance theory, they requested Noether’s help. To solve the problem, she developed a novel theorem, applicable across all of physics, which relates conservation laws to continuous symmetries—one of the most important pieces of mathematical reasoning ever developed. Noether’s “first” and “second” theorem was published in 1918. The first theorem relates symmetries under global spacetime transformations to the conservation of energy and momentum, and symmetry under global gauge transformations to charge conservation. In continuum mechanics and field theories, these conservation laws are expressed as equations of continuity. The second theorem, an extension of the first, allows transformations with local gauge invariance, and the equations of continuity acquire the covariant derivative characteristic of coupled matter-field systems. General relativity, it turns out, exhibits local gauge invariance. Noether’s theorem also laid the foundation for later generations to apply local gauge invariance to theories of elementary particle interactions. In Dwight E. Neuenschwander’s new edition of Emmy Noether’s Wonderful Theorem, readers will encounter an updated explanation of Noether’s “first” theorem. The discussion of local gauge invariance has been expanded into a detailed presentation of the motivation, proof, and applications of the “second” theorem, including Noether’s resolution of concerns about general relativity. Other refinements in the new edition include an enlarged biography of Emmy Noether’s life and work, parallels drawn between the present approach and Noether’s original 1918 paper, and a summary of the logic behind Noether’s theorem.