This book contains thirty-six short papers on recent progress in a variety of subjects in mathematical and theoretical physics, written for the proceedings of a symposium in honor of the seventieth birthday of Professor F Y Wu, held at the Nankai Institute of Mathematics, October 7OCo11, 2001. The collection of papers is aimed at researchers, including graduate students, with an interdisciplinary interest and gives a brief introduction to many of the topics of current interest. These include new results on exactly solvable models in statistical mechanics, integrable through the YangOCoBaxter equations, quantum groups, fractional statistics, random matrices, index theorems on the lattice, combinatorics, and other related topics."
This book contains thirty-six short papers on recent progress in a variety of subjects in mathematical and theoretical physics, written for the proceedings of a symposium in honor of the seventieth birthday of Professor F Y Wu, held at the Nankai Institute of Mathematics, October 7-11, 2001. The collection of papers is aimed at researchers, including graduate students, with an interdisciplinary interest and gives a brief introduction to many of the topics of current interest. These include new results on exactly solvable models in statistical mechanics, integrable through the Yang-Baxter equations, quantum groups, fractional statistics, random matrices, index theorems on the lattice, combinatorics, and other related topics.
Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
Lattice gas hydrodynamics describes the approach to fluid dynamics using a micro-world constructed as an automaton universe, where the microscopic dynamics is based not on a description of interacting particles, but on the laws of symmetry and invariance of macroscopic physics. We imagine point-like particles residing on a regular lattice, where they move from node to node and undergo collisions when their trajectories meet. If the collisions occur according to some simple logical rules, and if the lattice has the proper symmetry, then the automaton shows global behavior very similar to that of real fluids. This book carries two important messages. First, it shows how an automaton universe with simple microscopic dynamics--the lattice gas--can exhibit macroscopic behavior in accordance with the phenomenological laws of classical physics. Second, it demonstrates that lattice gases have spontaneous microscopic fluctuations that capture the essentials of actual fluctuations in real fluids.
The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.
This book brings a reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., making modern probability one of the most vibrant areas in mathematics.
This is an in-depth study of not just about Tan Kah-kee, but also the making of a legend through his deeds, self-sacrifices, fortitude and foresight. This revised edition sheds new light on his political agonies in Mao's China over campaigns against capitalists and intellectuals.
This book is a collection of survey articles on several topics related to the general notion of integrability. It stems from a workshop on ''Mathematical Methods of Regular Dynamics'' dedicated to Sophie Kowalevski. Leading experts introduce corresponding areas in depth. The book provides a broad overview of research, from the pioneering work of the nineteenth century to the developments of the 1970s through the present. The book begins with two historical papers by R. L. Cooke onKowalevski's life and work. Following are 15 research surveys on integrability issues in differential and algebraic geometry, classical complex analysis, discrete mathematics, spinning tops, Painleve equations, global analysis on manifolds, special functions, etc. It concludes with Kowalevski's famouspaper published in Acta Mathematica in 1889, ''Sur le probleme de la rotation d'un corps solide autour d'un point fixe''. The book is suitable for graduate students in pure and applied mathematics, the general mathematical audience studying integrability, and research mathematicians interested in differential and algebraic geometry, analysis, and special functions.
This volume celebrates the work of Petr Hájek on mathematical fuzzy logic and presents how his efforts have influenced prominent logicians who are continuing his work. The book opens with a discussion on Hájek's contribution to mathematical fuzzy logic and with a scientific biography of him, progresses to include two articles with a foundation flavour, that demonstrate some important aspects of Hájek's production, namely, a paper on the development of fuzzy sets and another paper on some fuzzy versions of set theory and arithmetic. Articles in the volume also focus on the treatment of vagueness, building connections between Hájek's favorite fuzzy logic and linguistic models of vagueness. Other articles introduce alternative notions of consequence relation, namely, the preservation of truth degrees, which is discussed in a general context, and the differential semantics. For the latter, a surprisingly strong standard completeness theorem is proved. Another contribution also looks at two principles valid in classical logic and characterize the three main t-norm logics in terms of these principles. Other articles, with an algebraic flavour, offer a summary of the applications of lattice ordered-groups to many-valued logic and to quantum logic, as well as an investigation of prelinearity in varieties of pointed lattice ordered algebras that satisfy a weak form of distributivity and have a very weak implication. The last part of the volume contains an article on possibilistic modal logics defined over MTL chains, a topic that Hájek discussed in his celebrated work, Metamathematics of Fuzzy Logic, and another one where the authors, besides offering unexpected premises such as proposing to call Hájek's basic fuzzy logic HL, instead of BL, propose a very weak system, called SL as a candidate for the role of the really basic fuzzy logic. The paper also provides a generalization of the prelinearity axiom, which was investigated by Hájek in the context of fuzzy logic.