Lattice QCD for Nuclear Physics

Lattice QCD for Nuclear Physics

Author: Huey-Wen Lin

Publisher: Springer

Published: 2014-11-21

Total Pages: 255

ISBN-13: 3319080229

DOWNLOAD EBOOK

With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.


Lattice QCD and Nuclear Physics

Lattice QCD and Nuclear Physics

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.


Lattice Methods For Quantum Chromodynamics

Lattice Methods For Quantum Chromodynamics

Author: Thomas A Degrand

Publisher: World Scientific

Published: 2006-09-27

Total Pages: 363

ISBN-13: 9814478342

DOWNLOAD EBOOK

Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology.This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually doing a simulation, descriptions of common strategies to connect simulation results to predictions of physical quantities, and a discussion of uncertainties in lattice simulations. More importantly, while lattice QCD is a well-defined field in its own right, it has many connections to continuum field theory and elementary particle physics phenomenology, which are carefully elucidated in this book./a /remove


Lattice QCD Study for the Relation Between Confinement and Chiral Symmetry Breaking

Lattice QCD Study for the Relation Between Confinement and Chiral Symmetry Breaking

Author: Takahiro Doi

Publisher: Springer

Published: 2017-10-10

Total Pages: 69

ISBN-13: 9811065969

DOWNLOAD EBOOK

This thesis focuses on an unresolved problem in particle and nuclear physics: the relation between two important non-perturbative phenomena in quantum chromodynamics (QCD) – quark confinement and chiral symmetry breaking. The author develops a new analysis method in the lattice QCD, and derives a number of analytical formulae to express the order parameters for quark confinement, such as the Polyakov loop, its fluctuations, and the Wilson loop in terms of the Dirac eigenmodes closely related to chiral symmetry breaking. Based on the analytical formulae, the author analytically as well as numerically shows that at finite temperatures there is no direct one-to-one correspondence between them. The thesis describes this extraordinary achievement using the first-principle analysis, and proposes a possible new phase in which quarks are confined and chiral symmetry is restored.


Hadronic Physics from Lattice QCD

Hadronic Physics from Lattice QCD

Author: Anthony M. Green

Publisher: World Scientific

Published: 2004

Total Pages: 385

ISBN-13: 9812701389

DOWNLOAD EBOOK

Particle and nuclear physicists frequently take results from Lattice QCD at their face value without probing into their reliability or sophistication. This attitude usually stems from a lack of knowledge of the field. The aim of the present volume is to rectify this by introducing in an elementary way several topics, which we believe are appropriate for, and of possible interest to, both particle and nuclear physicists who are non-experts in the field.


Nuclear Physics from Lattice QCD

Nuclear Physics from Lattice QCD

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The importance of lattice QCD to our understanding of the structure, spectroscopy, and interaction of hadrons is decribed. Recent accomplishments in each of these areas is outlined, and the opportunities emerging with increasing computational power are identified. Milestones at the 10 Tflops-years, 100 Tflops-years and Petaflops-years scales are presented.


Structure of Nucleon Excited States from Lattice QCD

Structure of Nucleon Excited States from Lattice QCD

Author: Finn M. Stokes

Publisher: Springer Nature

Published: 2019-08-20

Total Pages: 237

ISBN-13: 3030257223

DOWNLOAD EBOOK

Quantum Chromodynamics (QCD) describes the interactions between elementary quarks and gluons as they compose the nucleons at the heart of atomic structure. The interactions give rise to complexity that can only be examined via numerical simulations on supercomputers. This work provides an introduction to the numerical simulations of lattice QCD and establishes new formalisms relevant to understanding the structure of nucleons and their excited states. The research opens with an examination of the non-trivial QCD vacuum and the emergence of “centre domains.” The focus then turns to establishing a novel Parity-Expanded Variational Analysis (PEVA) technique solving the important problem of isolating baryon states moving with finite momentum. This seminal work provides a foundation for future calculations of baryon properties. Implementation of the PEVA formalism discloses important systematic errors in conventional calculations and reveals the structure of nucleon excited states from the first principles of QCD for the first time.


Nuclear Reactions from Lattice QCD.

Nuclear Reactions from Lattice QCD.

Author:

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.