Lattice Functions and Equations

Lattice Functions and Equations

Author: Sergiu Rudeanu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 442

ISBN-13: 144710241X

DOWNLOAD EBOOK

One of the chief aims of this self-contained monograph is to survey recent developments of Boolean functions and equations, as well as lattice functions and equations in more general classes of lattices. Lattice (Boolean) functions are algebraic functions defined over an arbitrary lattice (Boolean algebra), while lattice (Boolean) equations are equations expressed in terms of lattice (Boolean) functions. Special attention is also paid to consistency conditions and reproductive general solutions. Applications refer to graph theory, automata theory, synthesis of circuits, fault detection, databases, marketing and others. Lattice Functions and Equations updates and extends the author's previous monograph - Boolean Functions and Equations.


Lattice-Gas Cellular Automata and Lattice Boltzmann Models

Lattice-Gas Cellular Automata and Lattice Boltzmann Models

Author: Dieter A. Wolf-Gladrow

Publisher: Springer

Published: 2004-10-19

Total Pages: 320

ISBN-13: 3540465863

DOWNLOAD EBOOK

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.


Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)

Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)

Author: Jean Bourgain

Publisher: Princeton University Press

Published: 2005

Total Pages: 183

ISBN-13: 0691120986

DOWNLOAD EBOOK

This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art."


Lattice Gas Methods For Partial Differential Equations

Lattice Gas Methods For Partial Differential Equations

Author: Gary Doolen

Publisher: CRC Press

Published: 2019-03-01

Total Pages: 584

ISBN-13: 0429717504

DOWNLOAD EBOOK

Although the idea of using discrete methods for modeling partial differential equations occurred very early, the actual statement that cellular automata techniques can approximate the solutions of hydrodynamic partial differential equations was first discovered by Frisch, Hasslacher, and Pomeau. Their description of the derivation, which assumes the validity of the Boltzmann equation, appeared in the Physical Review Letters in April 1986. It is the intent of this book to provide some overview of the directions that lattice gas research has taken from 1986 to early 1989.


Non-Linear Lattice

Non-Linear Lattice

Author: Ignazio Licata and Sauro Succi

Publisher: MDPI

Published: 2018-07-17

Total Pages: 291

ISBN-13: 3038423068

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Non-Linear Lattice" that was published in Entropy


Algebraic Analysis of Solvable Lattice Models

Algebraic Analysis of Solvable Lattice Models

Author: Michio Jimbo

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 180

ISBN-13: 0821803204

DOWNLOAD EBOOK

Based on the NSF-CBMS Regional Conference lectures presented by Miwa in June 1993, this book surveys recent developments in the interplay between solvable lattice models in statistical mechanics and representation theory of quantum affine algebras. Because results in this subject were scattered in the literature, this book fills the need for a systematic account, focusing attention on fundamentals without assuming prior knowledge about lattice models or representation theory. After a brief account of basic principles in statistical mechanics, the authors discuss the standard subjects concerning solvable lattice models in statistical mechanics, the main examples being the spin 1/2 XXZ chain and the six-vertex model. The book goes on to introduce the main objects of study, the corner transfer matrices and the vertex operators, and discusses some of their aspects from the viewpoint of physics. Once the physical motivations are in place, the authors return to the mathematics, covering the Frenkel-Jing bosonization of a certain module, formulas for the vertex operators using bosons, the role of representation theory, and correlation functions and form factors. The limit of the XXX model is briefly discussed, and the book closes with a discussion of other types of models and related works.


Logic Functions and Equations

Logic Functions and Equations

Author: Christian Posthoff

Publisher: Springer

Published: 2018-12-31

Total Pages: 511

ISBN-13: 3030024202

DOWNLOAD EBOOK

The expanded and updated 2nd edition of this classic text offers the reader a comprehensive introduction to the concepts of logic functions and equations and their applications across computer science. The approach emphasizes a thorough understanding of the fundamental principles as well as numerical and computer-based solution methods. Updated throughout, some major additions for the 2nd edition include: - an expanded introductory section on logic equations; - a new chapter on sets, lattices, and classes of logic functions; - a new chapter about SAT-problems; - a new chapter about methods to solve extremely complex problems; and - an expanded section with new decomposition methods utilizing the Boolean Differential Calculus extended to lattices of logic functions. The book provides insight into applications across binary arithmetic, coding, complexity, logic design, programming, computer architecture, and artificial intelligence. Based on the extensive teaching experience of the authors, Logic Functions and Equations is highly recommended for a one- or two-semester course in computer science and related programs. It provides straightforward high-level access to these methods and enables sophisticated applications, elegantly bridging the gap between mathematics and the theoretical foundations of computer science.


A Continuum Limit of the Toda Lattice

A Continuum Limit of the Toda Lattice

Author: Percy Deift

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 233

ISBN-13: 0821806912

DOWNLOAD EBOOK

In this book, the authors describe a continuum limit of the Toda ODE system, obtained by taking as initial data for the finite lattice successively finer discretizations of two smooth functions. Using the integrability of the finite Toda lattice, the authors adapt the method introduced by Lax and Levermore for the study of the small dispersion limit of the Korteweg de Vries equations to the case of the Toda lattice. A general class of initial data is considered which permits, in particular, the formation of shocks. A feature of the analysis in this book is an extensive use of techniques from the theory of Riemann-Hilbert problems.