Lattice Engineering

Lattice Engineering

Author: Shumin Wang

Publisher: CRC Press

Published: 2012-11-27

Total Pages: 414

ISBN-13: 9814316296

DOWNLOAD EBOOK

This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bonding, heterostructure nanowires, and more. Basic knowledge on dislocations in semiconductors and innovative methods to eliminate threading dislocations are provided, and successful device applications are reviewed. It covers a variety of important semiconductor materials like SiGe, III-V including GaN and nano-wires; epitaxial methods like molecular beam epitaxy and metal organic vapor phase epitaxy; and devices like transistors and lasers etc.


Lattice Boltzmann Method And Its Application In Engineering

Lattice Boltzmann Method And Its Application In Engineering

Author: Zhaoli Guo

Publisher: World Scientific

Published: 2013-03-25

Total Pages: 419

ISBN-13: 9814508314

DOWNLOAD EBOOK

Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.


Lattice Boltzmann Method

Lattice Boltzmann Method

Author: Abdulmajeed A. Mohamad

Publisher:

Published: 2019

Total Pages: 228

ISBN-13: 9781447174240

DOWNLOAD EBOOK

Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.


Lattice Boltzmann Modeling

Lattice Boltzmann Modeling

Author: Michael C. Sukop

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 178

ISBN-13: 3540279822

DOWNLOAD EBOOK

Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.


Lattice Boltzmann Modeling of Complex Flows for Engineering Applications

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications

Author: Andrea Montessori

Publisher: Morgan & Claypool Publishers

Published: 2018-02-20

Total Pages: 151

ISBN-13: 1681746751

DOWNLOAD EBOOK

Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.


Complexity of Lattice Problems

Complexity of Lattice Problems

Author: Daniele Micciancio

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 229

ISBN-13: 1461508975

DOWNLOAD EBOOK

Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.


Dynamics of Lattice Materials

Dynamics of Lattice Materials

Author: A. Srikantha Phani

Publisher: John Wiley & Sons

Published: 2017-09-25

Total Pages: 312

ISBN-13: 1118729595

DOWNLOAD EBOOK

Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials Provides an in depth introduction to elastostatics and elastodynamics of lattice materials Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems Introduces contemporary concepts including pentamodes, local resonance and inertial amplification Includes chapters on fast computation and design optimization tools Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics


Image and Video Compression for Multimedia Engineering

Image and Video Compression for Multimedia Engineering

Author: Yun-Qing Shi

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 973

ISBN-13: 1351837702

DOWNLOAD EBOOK

Multimedia hardware still cannot accommodate the demand for large amounts of visual data. Without the generation of high-quality video bitstreams, limited hardware capabilities will continue to stifle the advancement of multimedia technologies. Thorough grounding in coding is needed so that applications such as MPEG-4 and JPEG 2000 may come to fruition. Image and Video Compression for Multimedia Engineering provides a solid, comprehensive understanding of the fundamentals and algorithms that lead to the creation of new methods for generating high quality video bit streams. The authors present a number of relevant advances along with international standards. New to the Second Edition · A chapter describing the recently developed video coding standard, MPEG-Part 10 Advances Video Coding also known as H.264 · Fundamental concepts and algorithms of JPEG2000 · Color systems of digital video · Up-to-date video coding standards and profiles Visual data, image, and video coding will continue to enable the creation of advanced hardware, suitable to the demands of new applications. Covering both image and video compression, this book yields a unique, self-contained reference for practitioners tobuild a basis for future study, research, and development.


High Tech Concrete: Where Technology and Engineering Meet

High Tech Concrete: Where Technology and Engineering Meet

Author: D.A. Hordijk

Publisher: Springer

Published: 2017-06-08

Total Pages: 2926

ISBN-13: 3319594710

DOWNLOAD EBOOK

This book contains the proceedings of the fib Symposium “High Tech Concrete: Where Technology and Engineering Meet”, that was held in Maastricht, The Netherlands, in June 2017. This annual symposium was organised by the Dutch Concrete Association and the Belgian Concrete Association. Topics addressed include: materials technology, modelling, testing and design, special loadings, safety, reliability and codes, existing concrete structures, durability and life time, sustainability, innovative building concepts, challenging projects and historic concrete, amongst others. The fib (International Federation for Structural Concrete) is a not-for-profit association committed to advancing the technical, economic, aesthetic and environmental performance of concrete structures worldwide.