Drawing on the authors' extensive research in the analysis of categorical longitudinal data, this book focuses on the formulation of latent Markov models and the practical use of these models. It demonstrates how to use the models in three types of analysis, with numerous examples illustrating how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB routines used for the examples are available on the authors' website.
Drawing on the authors’ extensive research in the analysis of categorical longitudinal data, Latent Markov Models for Longitudinal Data focuses on the formulation of latent Markov models and the practical use of these models. Numerous examples illustrate how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB® routines used for the examples are available on the authors’ website. The book provides you with the essential background on latent variable models, particularly the latent class model. It discusses how the Markov chain model and the latent class model represent a useful paradigm for latent Markov models. The authors illustrate the assumptions of the basic version of the latent Markov model and introduce maximum likelihood estimation through the Expectation-Maximization algorithm. They also cover constrained versions of the basic latent Markov model, describe the inclusion of the individual covariates, and address the random effects and multilevel extensions of the model. After covering advanced topics, the book concludes with a discussion on Bayesian inference as an alternative to maximum likelihood inference. As longitudinal data become increasingly relevant in many fields, researchers must rely on specific statistical and econometric models tailored to their application. A complete overview of latent Markov models, this book demonstrates how to use the models in three types of analysis: transition analysis with measurement errors, analyses that consider unobserved heterogeneity, and finding clusters of units and studying the transition between the clusters.
"Preface. Latent Markov models represent an important class of latent variable models for the analysis of longitudinal data, when the response variables measure common characteristics of interest which are not directly observable. Typically, the response variables are categorical, even if nothing precludes that they have a different nature. These models find application in many relevant fields, such as educational and health sciences, when the latent characteristics correspond, for instance, to a certain type of ability or to the quality-of-life. Important applications are also in the study of certain human behaviors which are relevant for social and economic research. The main feature that distinguishes latent Markov models from other models for longitudinal data is that the individual characteristics of interest, and their evolution in time, are represented by a latent process which follows a Markov chain. This implies that we are in the field of discrete latent variable models, where the latent variables may assume a finite number of values. Latent Markov models are then strongly related to the latent class model, which is an important tool for classifying a sample of subjects on the basis of a series of categorical response variables. The latter model is based on a discrete latent variable, the different values of which correspond to different subpopulations (named latent classes) having a common distribution about the response variables. The latent Markov model may be seen as an extension of the latent class model in which subjects are allowed to move between the latent classes during the period of observation"--
Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for collecting many more data points over time than previously possible. Other protocols, such as those used in fMRI and monitoring of public safety, also produce ILD, hence the statistical models in this volume are applicable to a range of data. The volume features state-of-the-art statistical modeling strategies developed by leading statisticians and methodologists working on ILD in conjunction with behavioral scientists. Chapters present applications from across the behavioral and health sciences, including coverage of substantive topics such as stress, smoking cessation, alcohol use, traffic patterns, educational performance and intimacy. Models for Intensive Longitudinal Data (MILD) is designed for those who want to learn about advanced statistical models for intensive longitudinal data and for those with an interest in selecting and applying a given model. The chapters highlight issues of general concern in modeling these kinds of data, such as a focus on regulatory systems, issues of curve registration, variable frequency and spacing of measurements, complex multivariate patterns of change, and multiple independent series. The extraordinary breadth of coverage makes this an indispensable reference for principal investigators designing new studies that will introduce ILD, applied statisticians working on related models, and methodologists, graduate students, and applied analysts working in a range of fields. A companion Web site at www.oup.com/us/MILD contains program examples and documentation.
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.
Applied Latent Class Analysis introduces several innovations in latent class analysis to a wider audience of researchers. Many of the world's leading innovators in the field of latent class analysis contributed essays to this volume, each presenting a key innovation to the basic latent class model and illustrating how it can prove useful in situations typically encountered in actual research.